{"title":"Rhizodeposition stimulates soil carbon decomposition and promotes formation of mineral-associated carbon with increased clay content","authors":"Md. Rumainul Islam, Bahareh Bicharanloo, Xing Yu, Balwant Singh, Feike A. Dijkstra","doi":"10.1016/j.geoderma.2025.117180","DOIUrl":null,"url":null,"abstract":"Rhizodeposition plays a key role in the formation and decomposition of soil organic carbon (SOC), but interactions with clay remain unclear. In this study, we examined how rhizodeposition contributes to SOC decomposition and the formation of particulate and mineral-associated organic C (POC and MAOC, respectively) in different soils with varying clay content. We collected soils from a grassland site covering three soil types and two depths, ranging in clay content from 15.6 to 66.4 %. We then grew ryegrass (<ce:italic>Lolium perenne</ce:italic>) in these soils in a glasshouse. After 76 days, plants were pulse-labelled with <ce:sup loc=\"post\">13</ce:sup>C-enriched CO<ce:inf loc=\"post\">2</ce:inf> to assess rhizodeposit C and SOC decomposition rates and the recovery of rhizodeposition in microbial biomass, POC and MAOC. The SOC decomposition showed no relationship with clay content, but a strong positive relationship with rhizodeposit C decomposition, indicating a positive rhizosphere priming effect. The rhizodeposition recovered in the MAOC was positively related to clay content and rhizodeposition recovered in microbial biomass. Our results suggest that microbial products from rhizodeposition are increasingly incorporated into MAOC with increased clay content. Our results further highlight the role of rhizodeposition for soil C decomposition and stabilisation and how both processes interact with clay content.","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":"59 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.geoderma.2025.117180","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Rhizodeposition plays a key role in the formation and decomposition of soil organic carbon (SOC), but interactions with clay remain unclear. In this study, we examined how rhizodeposition contributes to SOC decomposition and the formation of particulate and mineral-associated organic C (POC and MAOC, respectively) in different soils with varying clay content. We collected soils from a grassland site covering three soil types and two depths, ranging in clay content from 15.6 to 66.4 %. We then grew ryegrass (Lolium perenne) in these soils in a glasshouse. After 76 days, plants were pulse-labelled with 13C-enriched CO2 to assess rhizodeposit C and SOC decomposition rates and the recovery of rhizodeposition in microbial biomass, POC and MAOC. The SOC decomposition showed no relationship with clay content, but a strong positive relationship with rhizodeposit C decomposition, indicating a positive rhizosphere priming effect. The rhizodeposition recovered in the MAOC was positively related to clay content and rhizodeposition recovered in microbial biomass. Our results suggest that microbial products from rhizodeposition are increasingly incorporated into MAOC with increased clay content. Our results further highlight the role of rhizodeposition for soil C decomposition and stabilisation and how both processes interact with clay content.
期刊介绍:
Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.