A mass and charge conservative fully discrete scheme for a 3D diffuse interface model of the two-phase inductionless MHD flows

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED Computers & Mathematics with Applications Pub Date : 2025-01-28 DOI:10.1016/j.camwa.2025.01.020
Xiaorong Wang , Xuerui Mao , Shipeng Mao , Xiaoming He
{"title":"A mass and charge conservative fully discrete scheme for a 3D diffuse interface model of the two-phase inductionless MHD flows","authors":"Xiaorong Wang ,&nbsp;Xuerui Mao ,&nbsp;Shipeng Mao ,&nbsp;Xiaoming He","doi":"10.1016/j.camwa.2025.01.020","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the phase field model on a three-dimensional bounded domain for a two-phase, incompressible, inductionless magnetohydrodynamic (MHD) system, which is important for many engineering applications. To efficiently and accurately solve this multi-physics nonlinear system, we present a fully discrete scheme that ensures both mass and charge conservation. Making use of the discrete energy law, we demonstrate that the fully discrete scheme satisfies unconditional energy stability. Subsequently, by utilizing the Leray-Schauder principle, we establish the existence of solutions to the discrete scheme. As both mesh size and time step size tend to zero, we prove that the discrete solutions converge to the weak solution of the continuous problem. Finally, several three-dimensional numerical experiments, including the accuracy test, the bubble coalescence, the drop deformation and the Kelvin-Helmholtz (KH) instability, are performed to validate the reliability and efficiency of the proposed numerical scheme.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"182 ","pages":"Pages 139-162"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125000264","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the phase field model on a three-dimensional bounded domain for a two-phase, incompressible, inductionless magnetohydrodynamic (MHD) system, which is important for many engineering applications. To efficiently and accurately solve this multi-physics nonlinear system, we present a fully discrete scheme that ensures both mass and charge conservation. Making use of the discrete energy law, we demonstrate that the fully discrete scheme satisfies unconditional energy stability. Subsequently, by utilizing the Leray-Schauder principle, we establish the existence of solutions to the discrete scheme. As both mesh size and time step size tend to zero, we prove that the discrete solutions converge to the weak solution of the continuous problem. Finally, several three-dimensional numerical experiments, including the accuracy test, the bubble coalescence, the drop deformation and the Kelvin-Helmholtz (KH) instability, are performed to validate the reliability and efficiency of the proposed numerical scheme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
期刊最新文献
Nonconforming virtual element method for the Schrödinger eigenvalue problem Numerical methods for solving the inverse problem of 1D and 2D PT-symmetric potentials in the NLSE Generative adversarial physics-informed neural networks for solving forward and inverse problem with small labeled samples A bond-based linear peridynamic model for viscoelastic materials and its efficient collocation method A new parallel algorithm with high-order finite difference scheme for solving the Helmholtz equation in two and three dimensions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1