Xiaorong Wang , Xuerui Mao , Shipeng Mao , Xiaoming He
{"title":"A mass and charge conservative fully discrete scheme for a 3D diffuse interface model of the two-phase inductionless MHD flows","authors":"Xiaorong Wang , Xuerui Mao , Shipeng Mao , Xiaoming He","doi":"10.1016/j.camwa.2025.01.020","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the phase field model on a three-dimensional bounded domain for a two-phase, incompressible, inductionless magnetohydrodynamic (MHD) system, which is important for many engineering applications. To efficiently and accurately solve this multi-physics nonlinear system, we present a fully discrete scheme that ensures both mass and charge conservation. Making use of the discrete energy law, we demonstrate that the fully discrete scheme satisfies unconditional energy stability. Subsequently, by utilizing the Leray-Schauder principle, we establish the existence of solutions to the discrete scheme. As both mesh size and time step size tend to zero, we prove that the discrete solutions converge to the weak solution of the continuous problem. Finally, several three-dimensional numerical experiments, including the accuracy test, the bubble coalescence, the drop deformation and the Kelvin-Helmholtz (KH) instability, are performed to validate the reliability and efficiency of the proposed numerical scheme.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"182 ","pages":"Pages 139-162"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125000264","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study the phase field model on a three-dimensional bounded domain for a two-phase, incompressible, inductionless magnetohydrodynamic (MHD) system, which is important for many engineering applications. To efficiently and accurately solve this multi-physics nonlinear system, we present a fully discrete scheme that ensures both mass and charge conservation. Making use of the discrete energy law, we demonstrate that the fully discrete scheme satisfies unconditional energy stability. Subsequently, by utilizing the Leray-Schauder principle, we establish the existence of solutions to the discrete scheme. As both mesh size and time step size tend to zero, we prove that the discrete solutions converge to the weak solution of the continuous problem. Finally, several three-dimensional numerical experiments, including the accuracy test, the bubble coalescence, the drop deformation and the Kelvin-Helmholtz (KH) instability, are performed to validate the reliability and efficiency of the proposed numerical scheme.
期刊介绍:
Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).