Commercial Route Development of Sigma-2 Receptor Modulator, CT1812 Leveraging Photoflow, and HTS Technologies

IF 3.1 3区 化学 Q2 CHEMISTRY, APPLIED Organic Process Research & Development Pub Date : 2025-01-29 DOI:10.1021/acs.oprd.4c00412
Steven A. Weissman, Christopher J. Kassl, Siead Zegar, Sarah M. Pound, Nori Ikemoto, William Reid, Thorsten Rosner, Xican He, Xianda Chen, Junfei Wen, Liang Han, Xiaojun Huang, Chaoyang Chen, Yuehui Liu, Prithvi Vangal, Hongkun Lin, David D. Ford, Yuan-Qing Fang
{"title":"Commercial Route Development of Sigma-2 Receptor Modulator, CT1812 Leveraging Photoflow, and HTS Technologies","authors":"Steven A. Weissman, Christopher J. Kassl, Siead Zegar, Sarah M. Pound, Nori Ikemoto, William Reid, Thorsten Rosner, Xican He, Xianda Chen, Junfei Wen, Liang Han, Xiaojun Huang, Chaoyang Chen, Yuehui Liu, Prithvi Vangal, Hongkun Lin, David D. Ford, Yuan-Qing Fang","doi":"10.1021/acs.oprd.4c00412","DOIUrl":null,"url":null,"abstract":"A second-generation synthesis of CT1812, a sigma-2 receptor modulator (ligand), was developed from readily available starting materials to support late-stage clinical needs. An AIBN-induced thermal benzylic bromination in DCE was replaced by a visible-light-induced continuous flow process in MeCN operating at room temperature. High throughput screening was employed to overcome the unexpected challenges encountered in the hydrogenation of alkyne <b>13</b> in the penultimate step. The rationale for a polymorph switch from the originally developed monofumarate anhydrate to the more thermodynamically stable hemifumarate dihydrate is also described. The new convergent route proceeds in eight steps (longest linear sequence (LLS) = 6) as compared to the original med chem route (12 steps; LLS = 9) and has been successfully demonstrated on a 100 kg scale.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"7 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.oprd.4c00412","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A second-generation synthesis of CT1812, a sigma-2 receptor modulator (ligand), was developed from readily available starting materials to support late-stage clinical needs. An AIBN-induced thermal benzylic bromination in DCE was replaced by a visible-light-induced continuous flow process in MeCN operating at room temperature. High throughput screening was employed to overcome the unexpected challenges encountered in the hydrogenation of alkyne 13 in the penultimate step. The rationale for a polymorph switch from the originally developed monofumarate anhydrate to the more thermodynamically stable hemifumarate dihydrate is also described. The new convergent route proceeds in eight steps (longest linear sequence (LLS) = 6) as compared to the original med chem route (12 steps; LLS = 9) and has been successfully demonstrated on a 100 kg scale.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.90
自引率
14.70%
发文量
251
审稿时长
2 months
期刊介绍: The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.
期刊最新文献
Commercial Route Development of Sigma-2 Receptor Modulator, CT1812 Leveraging Photoflow, and HTS Technologies Methodologies for the Formation of 2-Substituted Oxetanes: Synthesis of (S)-Oxetan-2-ylmethyl Tosylate Adoption of Electrochemistry within the Pharmaceutical Industry: Insights from an Industry-Wide Survey Application of an Interdisciplinary Approach to Form Selection in Drug Development A Confined Impinging Jet Reactor for High-Throughput Continuous Flow Mononitration of Salicylic Acid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1