Scutellarein Inhibits Osteosarcoma Growth by Targeting the TLR4/TRAF6/NF-κB Pathway.

IF 4.7 2区 医学 Q1 CHEMISTRY, MEDICINAL Drug Design, Development and Therapy Pub Date : 2025-01-06 eCollection Date: 2025-01-01 DOI:10.2147/DDDT.S489092
Yingxu Shi, Yu Tang, Zhiwei Sun, Ping Sui, Yiming Shao, Zhonghao Wang, Jian Zhang, Ming Gao
{"title":"Scutellarein Inhibits Osteosarcoma Growth by Targeting the TLR4/TRAF6/NF-κB Pathway.","authors":"Yingxu Shi, Yu Tang, Zhiwei Sun, Ping Sui, Yiming Shao, Zhonghao Wang, Jian Zhang, Ming Gao","doi":"10.2147/DDDT.S489092","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Osteosarcoma (OS) is the most common malignant tumor associated with poor patient outcomes and a limited availability of therapeutic agents. Scutellarein (SCU) is a monomeric flavone bioactive compound with potent anti-cancer activity. However, the effects and mechanisms of SCU on the growth of OS remain unknown.</p><p><strong>Methods: </strong>The Cell Counting Kit-8, colony formation assay and 5-ethynyl-2'-deoxyuridine (EdU) incorporation assays were used to analyze cell proliferation ability in vitro. TLR4/TRAF6/NF-κB signaling transduction was investigated by RNA sequencing analysis, quantitative real-time polymerase chain reaction, Western blotting, NF-κB luciferase reporter assay, immunofluorescent staining, and immunoprecipitation. Molecular docking and cellular thermal shift assay were employed to confirm the binding interaction between SCU and TLR4. The effects of SCU and TLR4 overexpression on OS growth were analyzed using a xenograft tumor model and immunohistochemical staining.</p><p><strong>Results: </strong>SCU was found to significantly inhibit OS cell proliferation, and RNA sequencing analysis suggested that the NF-κB pathway is closely associated with this process. Further studies revealed that SCU inhibited the canonical NF-κB pathway through its binding with TLR4, which disrupted the interaction of TLR4 and TRAF6. Moreover, SCU also repressed NF-κB signal transduction by inhibiting TLR4 expression. Furthermore, SCU was revealed to suppress OS cell proliferation by targeting TLR4 in vitro and in vivo.</p><p><strong>Conclusion: </strong>SCU exhibited a dual impact by inhibiting TLR4 expression and disrupting TLR4-TRAF6 interaction, resulting in NF-κB inactivation, thereby blocking OS growth.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"19 ","pages":"51-64"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11720808/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S489092","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Osteosarcoma (OS) is the most common malignant tumor associated with poor patient outcomes and a limited availability of therapeutic agents. Scutellarein (SCU) is a monomeric flavone bioactive compound with potent anti-cancer activity. However, the effects and mechanisms of SCU on the growth of OS remain unknown.

Methods: The Cell Counting Kit-8, colony formation assay and 5-ethynyl-2'-deoxyuridine (EdU) incorporation assays were used to analyze cell proliferation ability in vitro. TLR4/TRAF6/NF-κB signaling transduction was investigated by RNA sequencing analysis, quantitative real-time polymerase chain reaction, Western blotting, NF-κB luciferase reporter assay, immunofluorescent staining, and immunoprecipitation. Molecular docking and cellular thermal shift assay were employed to confirm the binding interaction between SCU and TLR4. The effects of SCU and TLR4 overexpression on OS growth were analyzed using a xenograft tumor model and immunohistochemical staining.

Results: SCU was found to significantly inhibit OS cell proliferation, and RNA sequencing analysis suggested that the NF-κB pathway is closely associated with this process. Further studies revealed that SCU inhibited the canonical NF-κB pathway through its binding with TLR4, which disrupted the interaction of TLR4 and TRAF6. Moreover, SCU also repressed NF-κB signal transduction by inhibiting TLR4 expression. Furthermore, SCU was revealed to suppress OS cell proliferation by targeting TLR4 in vitro and in vivo.

Conclusion: SCU exhibited a dual impact by inhibiting TLR4 expression and disrupting TLR4-TRAF6 interaction, resulting in NF-κB inactivation, thereby blocking OS growth.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Drug Design, Development and Therapy
Drug Design, Development and Therapy CHEMISTRY, MEDICINAL-PHARMACOLOGY & PHARMACY
CiteScore
9.00
自引率
0.00%
发文量
382
审稿时长
>12 weeks
期刊介绍: Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications. The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas. Specific topics covered by the journal include: Drug target identification and validation Phenotypic screening and target deconvolution Biochemical analyses of drug targets and their pathways New methods or relevant applications in molecular/drug design and computer-aided drug discovery* Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes) Structural or molecular biological studies elucidating molecular recognition processes Fragment-based drug discovery Pharmaceutical/red biotechnology Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products** Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing) Preclinical development studies Translational animal models Mechanisms of action and signalling pathways Toxicology Gene therapy, cell therapy and immunotherapy Personalized medicine and pharmacogenomics Clinical drug evaluation Patient safety and sustained use of medicines.
期刊最新文献
Lipid Nanovesicles in Cancer Treatment: Improving Targeting and Stability of Antisense Oligonucleotides. NLRP3 Inflammasome Targeting Offers a Novel Therapeutic Paradigm for Sepsis-Induced Myocardial Injury. Population Pharmacokinetic of Epidural Sufentanil in Labouring Women: A Multicentric, Prospective, Observational Study. Determination of the MEC90 of Oxycodone for Preventing Perioperative Shivering in Pregnant Patients Undergoing Caesarean Delivery with Neuraxial Anaesthesia: A Biased-Coin up-and-Down Sequential Allocation Trial. Effects of Ciprofol and Propofol General Anesthesia on Postoperative Recovery Quality in Patients Undergoing Ureteroscopy: A Randomized, Controlled, Double-Blind Clinical Trial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1