Similar, but not the same: multiomics comparison of human valve interstitial cells and osteoblast osteogenic differentiation expanded with an estimation of data-dependent and data-independent PASEF proteomics.

IF 11.8 2区 生物学 Q1 MULTIDISCIPLINARY SCIENCES GigaScience Pub Date : 2025-01-06 DOI:10.1093/gigascience/giae110
Arseniy Lobov, Polina Kuchur, Nadezhda Boyarskaya, Daria Perepletchikova, Ivan Taraskin, Andrei Ivashkin, Daria Kostina, Irina Khvorova, Vladimir Uspensky, Egor Repkin, Evgeny Denisov, Tatiana Gerashchenko, Rashid Tikhilov, Svetlana Bozhkova, Vitaly Karelkin, Chunli Wang, Kang Xu, Anna Malashicheva
{"title":"Similar, but not the same: multiomics comparison of human valve interstitial cells and osteoblast osteogenic differentiation expanded with an estimation of data-dependent and data-independent PASEF proteomics.","authors":"Arseniy Lobov, Polina Kuchur, Nadezhda Boyarskaya, Daria Perepletchikova, Ivan Taraskin, Andrei Ivashkin, Daria Kostina, Irina Khvorova, Vladimir Uspensky, Egor Repkin, Evgeny Denisov, Tatiana Gerashchenko, Rashid Tikhilov, Svetlana Bozhkova, Vitaly Karelkin, Chunli Wang, Kang Xu, Anna Malashicheva","doi":"10.1093/gigascience/giae110","DOIUrl":null,"url":null,"abstract":"<p><p>Osteogenic differentiation is crucial in normal bone formation and pathological calcification, such as calcific aortic valve disease (CAVD). Understanding the proteomic and transcriptomic landscapes underlying this differentiation can unveil potential therapeutic targets for CAVD. In this study, we employed RNA sequencing transcriptomics and proteomics on a timsTOF Pro platform to explore the multiomics profiles of valve interstitial cells (VICs) and osteoblasts during osteogenic differentiation. For proteomics, we utilized 3 data acquisition/analysis techniques: data-dependent acquisition (DDA)-parallel accumulation serial fragmentation (PASEF) and data-independent acquisition (DIA)-PASEF with a classic library-based (DIA) and machine learning-based library-free search (DIA-ML). Using RNA sequencing data as a biological reference, we compared these 3 analytical techniques in the context of actual biological experiments. We use this comprehensive dataset to reveal distinct proteomic and transcriptomic profiles between VICs and osteoblasts, highlighting specific biological processes in their osteogenic differentiation pathways. The study identified potential therapeutic targets specific for VICs osteogenic differentiation in CAVD, including the MAOA and ERK1/2 pathway. From a technical perspective, we found that DIA-based methods demonstrate even higher superiority against DDA for more sophisticated human primary cell cultures than it was shown before on HeLa samples. While the classic library-based DIA approach has proved to be a gold standard for shotgun proteomics research, the DIA-ML offers significant advantages with a relatively minor compromise in data reliability, making it the method of choice for routine proteomics.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724719/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giae110","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Osteogenic differentiation is crucial in normal bone formation and pathological calcification, such as calcific aortic valve disease (CAVD). Understanding the proteomic and transcriptomic landscapes underlying this differentiation can unveil potential therapeutic targets for CAVD. In this study, we employed RNA sequencing transcriptomics and proteomics on a timsTOF Pro platform to explore the multiomics profiles of valve interstitial cells (VICs) and osteoblasts during osteogenic differentiation. For proteomics, we utilized 3 data acquisition/analysis techniques: data-dependent acquisition (DDA)-parallel accumulation serial fragmentation (PASEF) and data-independent acquisition (DIA)-PASEF with a classic library-based (DIA) and machine learning-based library-free search (DIA-ML). Using RNA sequencing data as a biological reference, we compared these 3 analytical techniques in the context of actual biological experiments. We use this comprehensive dataset to reveal distinct proteomic and transcriptomic profiles between VICs and osteoblasts, highlighting specific biological processes in their osteogenic differentiation pathways. The study identified potential therapeutic targets specific for VICs osteogenic differentiation in CAVD, including the MAOA and ERK1/2 pathway. From a technical perspective, we found that DIA-based methods demonstrate even higher superiority against DDA for more sophisticated human primary cell cultures than it was shown before on HeLa samples. While the classic library-based DIA approach has proved to be a gold standard for shotgun proteomics research, the DIA-ML offers significant advantages with a relatively minor compromise in data reliability, making it the method of choice for routine proteomics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
成骨分化在正常骨形成和病理钙化(如钙化性主动脉瓣病(CAVD))中至关重要。了解这种分化背后的蛋白质组和转录组图谱可以揭示治疗 CAVD 的潜在靶点。在这项研究中,我们在timsTOF Pro平台上采用了RNA测序转录组学和蛋白质组学,以探索成骨分化过程中瓣膜间质细胞(VICs)和成骨细胞的多组学特征。在蛋白质组学方面,我们采用了3种数据采集/分析技术:数据依赖性采集(DDA)-平行累积序列片段(PASEF)和数据无关性采集(DIA)-PASEF,以及基于经典文库的搜索(DIA)和基于机器学习的无文库搜索(DIA-ML)。我们使用 RNA 测序数据作为生物参考,在实际生物实验中对这 3 种分析技术进行了比较。我们利用这个全面的数据集揭示了 VICs 和成骨细胞之间不同的蛋白质组和转录组特征,突出了它们成骨分化途径中的特定生物过程。研究发现了CAVD中VICs成骨分化的潜在治疗靶点,包括MAOA和ERK1/2通路。从技术角度看,我们发现基于 DIA 的方法在更复杂的人类原代细胞培养物上比 DDA 更有优势,这一点在 HeLa 样品上已经得到证实。虽然经典的基于文库的 DIA 方法已被证明是枪式蛋白质组学研究的黄金标准,但 DIA-ML 在数据可靠性方面的妥协相对较小,却提供了显著的优势,使其成为常规蛋白质组学研究的首选方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
GigaScience
GigaScience MULTIDISCIPLINARY SCIENCES-
CiteScore
15.50
自引率
1.10%
发文量
119
审稿时长
1 weeks
期刊介绍: GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.
期刊最新文献
Knowledge graph-based thought: a knowledge graph-enhanced LLM framework for pan-cancer question answering. Mutation impact on mRNA versus protein expression across human cancers. Telomere-to-telomere genome and resequencing of 254 individuals reveal evolution, genomic footprints in Asian icefish, Protosalanx chinensis. An ecosystem for producing and sharing metadata within the web of FAIR Data. Chromosome-level echidna genome illuminates evolution of multiple sex chromosome system in monotremes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1