Oncolytic reprogramming of tumor microenvironment shapes CD4 T-cell memory via the IL6ra-Bcl6 axis for targeted control of glioblastoma

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2025-01-30 DOI:10.1038/s41467-024-55455-9
Jeffrey M. Grimes, Sadashib Ghosh, Shamza Manzoor, Li X. Li, Monica M. Moran, Jennifer C. Clements, Sherrie D. Alexander, James M. Markert, Jianmei W. Leavenworth
{"title":"Oncolytic reprogramming of tumor microenvironment shapes CD4 T-cell memory via the IL6ra-Bcl6 axis for targeted control of glioblastoma","authors":"Jeffrey M. Grimes, Sadashib Ghosh, Shamza Manzoor, Li X. Li, Monica M. Moran, Jennifer C. Clements, Sherrie D. Alexander, James M. Markert, Jianmei W. Leavenworth","doi":"10.1038/s41467-024-55455-9","DOIUrl":null,"url":null,"abstract":"<p>Oncolytic viruses (OVs) emerge as a promising cancer immunotherapy. However, the temporal impact on tumor cells and the tumor microenvironment, and the nature of anti-tumor immunity post-therapy remain largely unclear. Here we report that CD4<sup>+</sup> T cells are required for durable tumor control in syngeneic murine models of glioblastoma multiforme after treatment with an oncolytic herpes simplex virus (oHSV) engineered to express IL-12. The upregulated MHCII on residual tumor cells facilitates programmed polyfunctional CD4<sup>+</sup> T cells for tumor control and for recall responses. Mechanistically, the proper ratio of Bcl-6 to T-bet in CD4<sup>+</sup> T cells navigates their enhanced anti-tumor capacity, and a reciprocal IL6ra-Bcl-6 regulatory axis in a memory CD4<sup>+</sup> T-cell subset, which requires MHCII signals from reprogrammed tumor cells, tumor-infiltrating and resident myeloid cells, is necessary for the prolonged response. These findings uncover an OV-induced tumor/myeloid-CD4<sup>+</sup> T-cell partnership, leading to long-term anti-tumor immune memory, and improved OV therapeutic efficacy.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"49 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55455-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Oncolytic viruses (OVs) emerge as a promising cancer immunotherapy. However, the temporal impact on tumor cells and the tumor microenvironment, and the nature of anti-tumor immunity post-therapy remain largely unclear. Here we report that CD4+ T cells are required for durable tumor control in syngeneic murine models of glioblastoma multiforme after treatment with an oncolytic herpes simplex virus (oHSV) engineered to express IL-12. The upregulated MHCII on residual tumor cells facilitates programmed polyfunctional CD4+ T cells for tumor control and for recall responses. Mechanistically, the proper ratio of Bcl-6 to T-bet in CD4+ T cells navigates their enhanced anti-tumor capacity, and a reciprocal IL6ra-Bcl-6 regulatory axis in a memory CD4+ T-cell subset, which requires MHCII signals from reprogrammed tumor cells, tumor-infiltrating and resident myeloid cells, is necessary for the prolonged response. These findings uncover an OV-induced tumor/myeloid-CD4+ T-cell partnership, leading to long-term anti-tumor immune memory, and improved OV therapeutic efficacy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Prioritizing involuntary immobility in climate policy and disaster planning Neural signatures of temporal anticipation in human cortex represent event probability density Phosphate-dependent nuclear export via a non-classical NES class recognized by exportin Msn5 Aggregation induced emission luminogen bacteria hybrid bionic robot for multimodal phototheranostics and immunotherapy Mechanism of ASF1 engagement by CDAN1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1