{"title":"Unconditional superconvergence analysis of low-order conforming mixed finite element method for time-dependent incompressible MHD equations","authors":"Xiaochen Chu, Xiangyu Shi, Dongyang Shi","doi":"10.1016/j.cnsns.2025.108627","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a backward Euler semi-implicit full discrete scheme for the time-dependent incompressible MHD equations and study the superconvergence behavior of the scheme. The spatial discretization is based on the bilinear-constant-bilinear elements for the velocity, pressure and magnetic fields, respectively, while the time discretization is based on the first-order backward Euler scheme. Firstly, we prove a new high accuracy estimation lemma related to the magnetic field, and prove the unconditional boundedness of numerical solutions in <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>∞</mml:mi></mml:mrow></mml:msup></mml:math>-norm by introducing a time-discrete auxiliary system. Then we derive the superclose estimates rigorously, which lead to the corresponding superconvergence results with assistance from interpolation post-processing techniques. In the end, we provide some numerical examples to verify the correctness of our theoretical analysis.","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"53 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.cnsns.2025.108627","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose a backward Euler semi-implicit full discrete scheme for the time-dependent incompressible MHD equations and study the superconvergence behavior of the scheme. The spatial discretization is based on the bilinear-constant-bilinear elements for the velocity, pressure and magnetic fields, respectively, while the time discretization is based on the first-order backward Euler scheme. Firstly, we prove a new high accuracy estimation lemma related to the magnetic field, and prove the unconditional boundedness of numerical solutions in L∞-norm by introducing a time-discrete auxiliary system. Then we derive the superclose estimates rigorously, which lead to the corresponding superconvergence results with assistance from interpolation post-processing techniques. In the end, we provide some numerical examples to verify the correctness of our theoretical analysis.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.