Ali Karimi, Mohammad Yaghoobi and Alireza Abbaspourrad
{"title":"Geometry of obstructed pathway regulates upstream navigational pattern of sperm population†","authors":"Ali Karimi, Mohammad Yaghoobi and Alireza Abbaspourrad","doi":"10.1039/D4LC00797B","DOIUrl":null,"url":null,"abstract":"<p >Sperm navigation through the complex microarchitecture of the fallopian tube is essential for successful fertilization. Spatiotemporal structural alteration due to folded epithelium or muscle contractions in the fallopian tube changes the geometry of the sperm pathways. The role of structural complexity in sperm navigational patterns has been investigated for single sperm cells but has not been fully addressed at the population level. Here, we studied the dynamics of the navigation of a bull sperm population through obstructed pathways mimicking the architecture of the female reproductive tract. We observed that slightly tapered barriers enhance navigation by 20% compared to straight pathway; however, tapered barriers with a 90° angle restrict sperm passage. We demonstrated sperm cooperation while passing through a tapered pathway in a low-viscosity medium under elevated shear rates. These findings propose a fresh perspective on how sperm move through the fallopian tube, suggesting that the convoluted pathways' shape influences sperm navigation locally.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 4","pages":" 631-643"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lc/d4lc00797b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/lc/d4lc00797b","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Sperm navigation through the complex microarchitecture of the fallopian tube is essential for successful fertilization. Spatiotemporal structural alteration due to folded epithelium or muscle contractions in the fallopian tube changes the geometry of the sperm pathways. The role of structural complexity in sperm navigational patterns has been investigated for single sperm cells but has not been fully addressed at the population level. Here, we studied the dynamics of the navigation of a bull sperm population through obstructed pathways mimicking the architecture of the female reproductive tract. We observed that slightly tapered barriers enhance navigation by 20% compared to straight pathway; however, tapered barriers with a 90° angle restrict sperm passage. We demonstrated sperm cooperation while passing through a tapered pathway in a low-viscosity medium under elevated shear rates. These findings propose a fresh perspective on how sperm move through the fallopian tube, suggesting that the convoluted pathways' shape influences sperm navigation locally.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.