Z-DNA at the crossroads: untangling its role in genome dynamics.

IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Trends in Biochemical Sciences Pub Date : 2025-01-27 DOI:10.1016/j.tibs.2025.01.001
Vinodh J Sahayasheela, Mitsuharu Ooga, Tomotaka Kumagai, Hiroshi Sugiyama
{"title":"Z-DNA at the crossroads: untangling its role in genome dynamics.","authors":"Vinodh J Sahayasheela, Mitsuharu Ooga, Tomotaka Kumagai, Hiroshi Sugiyama","doi":"10.1016/j.tibs.2025.01.001","DOIUrl":null,"url":null,"abstract":"<p><p>DNA can fold into noncanonical left-handed Z-DNA conformation beyond the right-handed B-DNA. While its crystal structure was discovered nearly four decades ago, it was predominantly considered a structural curiosity. Recent evidence suggests that Z-DNA formation occurs in nuclear and mitochondrial DNA (mtDNA), with significant biological implications. However, our understanding of its roles remains in its infancy, primarily due to a lack of study tools. In this review we summarize the structure and function of Z-DNA within the genome while addressing the difficulties associated with identifying and investigating its role(s). We then critically evaluate several intracellular factors that can modulate and regulate Z-DNA. Additionally, we discuss the recent technological and methodological advances that may overcome the challenges and enhance our understanding of Z-DNA.</p>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":" ","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Biochemical Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tibs.2025.01.001","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

DNA can fold into noncanonical left-handed Z-DNA conformation beyond the right-handed B-DNA. While its crystal structure was discovered nearly four decades ago, it was predominantly considered a structural curiosity. Recent evidence suggests that Z-DNA formation occurs in nuclear and mitochondrial DNA (mtDNA), with significant biological implications. However, our understanding of its roles remains in its infancy, primarily due to a lack of study tools. In this review we summarize the structure and function of Z-DNA within the genome while addressing the difficulties associated with identifying and investigating its role(s). We then critically evaluate several intracellular factors that can modulate and regulate Z-DNA. Additionally, we discuss the recent technological and methodological advances that may overcome the challenges and enhance our understanding of Z-DNA.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Trends in Biochemical Sciences
Trends in Biochemical Sciences 生物-生化与分子生物学
CiteScore
22.90
自引率
0.70%
发文量
148
审稿时长
6-12 weeks
期刊介绍: For over 40 years, Trends in Biochemical Sciences (TIBS) has been a leading publication keeping readers informed about recent advances in all areas of biochemistry and molecular biology. Through monthly, peer-reviewed issues, TIBS covers a wide range of topics, from traditional subjects like protein structure and function to emerging areas in signaling and metabolism. Articles are curated by the Editor and authored by top researchers in their fields, with a focus on moving beyond simple literature summaries to providing novel insights and perspectives. Each issue primarily features concise and timely Reviews and Opinions, supplemented by shorter articles including Spotlights, Forums, and Technology of the Month, as well as impactful pieces like Science & Society and Scientific Life articles.
期刊最新文献
FIGNL1 hexamer dissociates RAD51-filament: a new mechanism. Regulating Nrf2 activity: ubiquitin ligases and signaling molecules in redox homeostasis. Z-DNA at the crossroads: untangling its role in genome dynamics. Protein N-terminal modifications: molecular machineries and biological implications. Structured protein domains enter the spotlight: modulators of biomolecular condensate form and function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1