Diversity and dynamics of multiple symbionts contribute to early development of broadcast spawning reef-building coral Dipsastraea veroni.

IF 3.9 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Applied and Environmental Microbiology Pub Date : 2025-01-29 DOI:10.1128/aem.02359-24
Minglan Guo, Lei Jiang, Guowei Zhou, Jiansheng Lian, Xiaolei Yu, Hui Huang
{"title":"Diversity and dynamics of multiple symbionts contribute to early development of broadcast spawning reef-building coral <i>Dipsastraea veroni</i>.","authors":"Minglan Guo, Lei Jiang, Guowei Zhou, Jiansheng Lian, Xiaolei Yu, Hui Huang","doi":"10.1128/aem.02359-24","DOIUrl":null,"url":null,"abstract":"<p><p>Sexual reproduction and recruitment enhance the genetic diversity and evolution of reef-building corals for population recovery and coral reef conservation under climate change. However, new recruits are vulnerable to physical changes and the mechanisms of symbiosis establishment remain poorly understood. Here, <i>Dipsastraea veroni</i>, a broadcast spawning hermaphrodite reef-building coral, was subjected to settlement and juvenile growth in flow-through <i>in situ</i> seawater at 27.93 ± 0.96°C. Symbiosis of Symbiodiniaceae, bacteria, and/or archaea by horizontal acquisition and/or hypothetical vertical transmission through the mucus with symbionts from the parent appears to be a heritable process of selection and adaptation in <i>D. veroni</i> at the egg, larva, juvenile (5 days post settlement, d p.s. and 32 d p.s.) stages. Symbiodiniaceae was dominated by the genera <i>Cladocopium</i>, <i>Durusdinium</i>, <i>Symbiodinium,</i> with increasing relative abundance of <i>Durusdinium</i> at 5 d p.s. and <i>Symbiodinium</i> at 32 d p.s. Mixed acquisition of the dominant phyla Pseudomonadota, Bacteroidota, Cyanobacteriota, Bacillota, Planctomycetota, and Actinomycetota in egg, larva, and/or juvenile showed a winnowing and regulated bacterial diversity and dynamics, resulting in stage-abundant orders Pseudomonadales and Bacillales in egg and Rhodobacterales, Rhodospirillales, Cyanobacteria, and Cyanobacteriales in larva and/or juvenile. The photoautotrophic Chloroflexales, Cyanobacteriales, and Chlorobiales were abundant in adults. The stable archaeal community contained predominant Crenarchaeota, Halobacterota, Nanoarchaeia Thermoplasmatota, and eight rare phyla, with increased relative abundance of the genera <i>Bathyarchaeota</i>, <i>Candidatus_Nitrosopumilus</i>, <i>Candidatus_Nitrocosmicus</i>, <i>Nitrosarchaeum</i>, <i>Candidatus_Nitrosotenuis</i>, <i>Candidatus_Nitrosopelagicus</i>, <i>Cenarchaeum</i>, <i>Haladaptatus</i>, <i>Halogranum</i>, <i>Halolamina,</i> and <i>Woesearchaeales</i> and <i>GW2011-AR15</i> in juveniles. All results revealed flexible symbiotic mechanisms in <i>D. veroni</i> during early ontogeny for coral survival and evolution.IMPORTANCEFlexible symbioses of Symbiodiniaceae, bacteria, and archaea appear to be a heritable process of selection and adaptation in <i>Dipsastraea veroni</i> in the field, benefiting early coral development and facilitating coral population recovery and reef conversation.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0235924"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/aem.02359-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sexual reproduction and recruitment enhance the genetic diversity and evolution of reef-building corals for population recovery and coral reef conservation under climate change. However, new recruits are vulnerable to physical changes and the mechanisms of symbiosis establishment remain poorly understood. Here, Dipsastraea veroni, a broadcast spawning hermaphrodite reef-building coral, was subjected to settlement and juvenile growth in flow-through in situ seawater at 27.93 ± 0.96°C. Symbiosis of Symbiodiniaceae, bacteria, and/or archaea by horizontal acquisition and/or hypothetical vertical transmission through the mucus with symbionts from the parent appears to be a heritable process of selection and adaptation in D. veroni at the egg, larva, juvenile (5 days post settlement, d p.s. and 32 d p.s.) stages. Symbiodiniaceae was dominated by the genera Cladocopium, Durusdinium, Symbiodinium, with increasing relative abundance of Durusdinium at 5 d p.s. and Symbiodinium at 32 d p.s. Mixed acquisition of the dominant phyla Pseudomonadota, Bacteroidota, Cyanobacteriota, Bacillota, Planctomycetota, and Actinomycetota in egg, larva, and/or juvenile showed a winnowing and regulated bacterial diversity and dynamics, resulting in stage-abundant orders Pseudomonadales and Bacillales in egg and Rhodobacterales, Rhodospirillales, Cyanobacteria, and Cyanobacteriales in larva and/or juvenile. The photoautotrophic Chloroflexales, Cyanobacteriales, and Chlorobiales were abundant in adults. The stable archaeal community contained predominant Crenarchaeota, Halobacterota, Nanoarchaeia Thermoplasmatota, and eight rare phyla, with increased relative abundance of the genera Bathyarchaeota, Candidatus_Nitrosopumilus, Candidatus_Nitrocosmicus, Nitrosarchaeum, Candidatus_Nitrosotenuis, Candidatus_Nitrosopelagicus, Cenarchaeum, Haladaptatus, Halogranum, Halolamina, and Woesearchaeales and GW2011-AR15 in juveniles. All results revealed flexible symbiotic mechanisms in D. veroni during early ontogeny for coral survival and evolution.IMPORTANCEFlexible symbioses of Symbiodiniaceae, bacteria, and archaea appear to be a heritable process of selection and adaptation in Dipsastraea veroni in the field, benefiting early coral development and facilitating coral population recovery and reef conversation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied and Environmental Microbiology
Applied and Environmental Microbiology 生物-生物工程与应用微生物
CiteScore
7.70
自引率
2.30%
发文量
730
审稿时长
1.9 months
期刊介绍: Applied and Environmental Microbiology (AEM) publishes papers that make significant contributions to (a) applied microbiology, including biotechnology, protein engineering, bioremediation, and food microbiology, (b) microbial ecology, including environmental, organismic, and genomic microbiology, and (c) interdisciplinary microbiology, including invertebrate microbiology, plant microbiology, aquatic microbiology, and geomicrobiology.
期刊最新文献
Inactivation of deposited bioaerosols on food contact surfaces with UV-C light emitting diode devices. Variability in cadmium tolerance of closely related Listeria monocytogenes isolates originating from dairy processing environments. Postdocs should receive relocation benefits from the universities that hire them. Systematic analysis of the glucose-PTS in Streptococcus sanguinis highlighted its importance in central metabolism and bacterial fitness. Papain expression in the Escherichia coli cytoplasm by T7-promoter engineering and co-expression with human protein disulfide isomerase (PDI) and thiol peroxidase (GPx7) genes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1