Sigma-1 Receptor Modulates CFA-Induced Inflammatory Pain via Sodium Channels in Small DRG Neurons.

IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Biomolecules Pub Date : 2025-01-06 DOI:10.3390/biom15010073
Yuanlong Song, Zifen Xu, Liangpin Zhang, Linlin Gao
{"title":"Sigma-1 Receptor Modulates CFA-Induced Inflammatory Pain via Sodium Channels in Small DRG Neurons.","authors":"Yuanlong Song, Zifen Xu, Liangpin Zhang, Linlin Gao","doi":"10.3390/biom15010073","DOIUrl":null,"url":null,"abstract":"<p><p>The sigma-1 receptor (Sig-1R) has emerged as a significant target in the realm of pain management and has been the subject of extensive research. Nonetheless, its specific function in inflammatory pain within dorsal root ganglion (DRG) neurons remains inadequately elucidated. This study utilized whole-cell patch clamp techniques, single-cell real-time PCR, and immunohistochemistry to examine the influence of Sig-1R on inflammatory pain induced by complete Freund's adjuvant (CFA) in a rat model. Our results revealed several key findings: (1) The expression of Sig-1R was found to be upregulated during the progression of inflammatory pain, with a notable translocation from the cytoplasm to the membrane; (2) Inhibition of peripheral Sig-1R using S1RA resulted in a reduction of CFA-induced allodynia; (3) Activation of Sig-1R through PRE-084 led to a decrease in the fast sodium current in isolated DRG neurons from CFA-treated rats, which was associated with a diminished action potential (AP) peak and maximum depolarizing rate (MDR), as well as an increased rheobase; (4) Furthermore, PRE-084 was observed to enhance the slow component of the sodium current, resulting in hyperpolarization of the threshold potential and an increase in AP firing frequency, alongside an elevation in the mRNA expression of the slow sodium channel Nav1.9 in CFA-treated rats. In conclusion, our findings suggest that the modulation of sodium channels by Sig-1R in DRG neurons plays a significant role in the mechanisms underlying inflammatory pain.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764217/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15010073","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The sigma-1 receptor (Sig-1R) has emerged as a significant target in the realm of pain management and has been the subject of extensive research. Nonetheless, its specific function in inflammatory pain within dorsal root ganglion (DRG) neurons remains inadequately elucidated. This study utilized whole-cell patch clamp techniques, single-cell real-time PCR, and immunohistochemistry to examine the influence of Sig-1R on inflammatory pain induced by complete Freund's adjuvant (CFA) in a rat model. Our results revealed several key findings: (1) The expression of Sig-1R was found to be upregulated during the progression of inflammatory pain, with a notable translocation from the cytoplasm to the membrane; (2) Inhibition of peripheral Sig-1R using S1RA resulted in a reduction of CFA-induced allodynia; (3) Activation of Sig-1R through PRE-084 led to a decrease in the fast sodium current in isolated DRG neurons from CFA-treated rats, which was associated with a diminished action potential (AP) peak and maximum depolarizing rate (MDR), as well as an increased rheobase; (4) Furthermore, PRE-084 was observed to enhance the slow component of the sodium current, resulting in hyperpolarization of the threshold potential and an increase in AP firing frequency, alongside an elevation in the mRNA expression of the slow sodium channel Nav1.9 in CFA-treated rats. In conclusion, our findings suggest that the modulation of sodium channels by Sig-1R in DRG neurons plays a significant role in the mechanisms underlying inflammatory pain.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomolecules
Biomolecules Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍: Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications.  Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
The Role of Quercetin, a Flavonoid in the Management of Pathogenesis Through Regulation of Oxidative Stress, Inflammation, and Biological Activities. Cell Type Specific Suppression of Hyper-Recombination by Human RAD18 Is Linked to Proliferating Cell Nuclear Antigen K164 Ubiquitination. Effects of Hyaluronic Acid on Three Different Cell Types of the Periodontium in a Novel Multi-Culture Cell Plate: An Exploratory Study. From Polydeoxyribonucleotides (PDRNs) to Polynucleotides (PNs): Bridging the Gap Between Scientific Definitions, Molecular Insights, and Clinical Applications of Multifunctional Biomolecules. Targeting the Interplay Between Autophagy and the Nrf2 Pathway in Parkinson's Disease with Potential Therapeutic Implications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1