Artificial intelligence methods applied to longitudinal data from electronic health records for prediction of cancer: a scoping review.

IF 3.9 3区 医学 Q1 HEALTH CARE SCIENCES & SERVICES BMC Medical Research Methodology Pub Date : 2025-01-28 DOI:10.1186/s12874-025-02473-w
Victoria Moglia, Owen Johnson, Gordon Cook, Marc de Kamps, Lesley Smith
{"title":"Artificial intelligence methods applied to longitudinal data from electronic health records for prediction of cancer: a scoping review.","authors":"Victoria Moglia, Owen Johnson, Gordon Cook, Marc de Kamps, Lesley Smith","doi":"10.1186/s12874-025-02473-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Early detection and diagnosis of cancer are vital to improving outcomes for patients. Artificial intelligence (AI) models have shown promise in the early detection and diagnosis of cancer, but there is limited evidence on methods that fully exploit the longitudinal data stored within electronic health records (EHRs). This review aims to summarise methods currently utilised for prediction of cancer from longitudinal data and provides recommendations on how such models should be developed.</p><p><strong>Methods: </strong>The review was conducted following PRISMA-ScR guidance. Six databases (MEDLINE, EMBASE, Web of Science, IEEE Xplore, PubMed and SCOPUS) were searched for relevant records published before 2/2/2024. Search terms related to the concepts \"artificial intelligence\", \"prediction\", \"health records\", \"longitudinal\", and \"cancer\". Data were extracted relating to several areas of the articles: (1) publication details, (2) study characteristics, (3) input data, (4) model characteristics, (4) reproducibility, and (5) quality assessment using the PROBAST tool. Models were evaluated against a framework for terminology relating to reporting of cancer detection and risk prediction models.</p><p><strong>Results: </strong>Of 653 records screened, 33 were included in the review; 10 predicted risk of cancer, 18 performed either cancer detection or early detection, 4 predicted recurrence, and 1 predicted metastasis. The most common cancers predicted in the studies were colorectal (n = 9) and pancreatic cancer (n = 9). 16 studies used feature engineering to represent temporal data, with the most common features representing trends. 18 used deep learning models which take a direct sequential input, most commonly recurrent neural networks, but also including convolutional neural networks and transformers. Prediction windows and lead times varied greatly between studies, even for models predicting the same cancer. High risk of bias was found in 90% of the studies. This risk was often introduced due to inappropriate study design (n = 26) and sample size (n = 26).</p><p><strong>Conclusion: </strong>This review highlights the breadth of approaches to cancer prediction from longitudinal data. We identify areas where reporting of methods could be improved, particularly regarding where in a patients' trajectory the model is applied. The review shows opportunities for further work, including comparison of these approaches and their applications in other cancers.</p>","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":"25 1","pages":"24"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773903/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Research Methodology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12874-025-02473-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Early detection and diagnosis of cancer are vital to improving outcomes for patients. Artificial intelligence (AI) models have shown promise in the early detection and diagnosis of cancer, but there is limited evidence on methods that fully exploit the longitudinal data stored within electronic health records (EHRs). This review aims to summarise methods currently utilised for prediction of cancer from longitudinal data and provides recommendations on how such models should be developed.

Methods: The review was conducted following PRISMA-ScR guidance. Six databases (MEDLINE, EMBASE, Web of Science, IEEE Xplore, PubMed and SCOPUS) were searched for relevant records published before 2/2/2024. Search terms related to the concepts "artificial intelligence", "prediction", "health records", "longitudinal", and "cancer". Data were extracted relating to several areas of the articles: (1) publication details, (2) study characteristics, (3) input data, (4) model characteristics, (4) reproducibility, and (5) quality assessment using the PROBAST tool. Models were evaluated against a framework for terminology relating to reporting of cancer detection and risk prediction models.

Results: Of 653 records screened, 33 were included in the review; 10 predicted risk of cancer, 18 performed either cancer detection or early detection, 4 predicted recurrence, and 1 predicted metastasis. The most common cancers predicted in the studies were colorectal (n = 9) and pancreatic cancer (n = 9). 16 studies used feature engineering to represent temporal data, with the most common features representing trends. 18 used deep learning models which take a direct sequential input, most commonly recurrent neural networks, but also including convolutional neural networks and transformers. Prediction windows and lead times varied greatly between studies, even for models predicting the same cancer. High risk of bias was found in 90% of the studies. This risk was often introduced due to inappropriate study design (n = 26) and sample size (n = 26).

Conclusion: This review highlights the breadth of approaches to cancer prediction from longitudinal data. We identify areas where reporting of methods could be improved, particularly regarding where in a patients' trajectory the model is applied. The review shows opportunities for further work, including comparison of these approaches and their applications in other cancers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Medical Research Methodology
BMC Medical Research Methodology 医学-卫生保健
CiteScore
6.50
自引率
2.50%
发文量
298
审稿时长
3-8 weeks
期刊介绍: BMC Medical Research Methodology is an open access journal publishing original peer-reviewed research articles in methodological approaches to healthcare research. Articles on the methodology of epidemiological research, clinical trials and meta-analysis/systematic review are particularly encouraged, as are empirical studies of the associations between choice of methodology and study outcomes. BMC Medical Research Methodology does not aim to publish articles describing scientific methods or techniques: these should be directed to the BMC journal covering the relevant biomedical subject area.
期刊最新文献
Bayesian dynamic borrowing in group-sequential design for medical device studies. Measuring adversity in the ABCD® Study: systematic review and recommendations for best practices. Sample size recalculation based on the overall success rate in a randomized test-treatment trial with restricting randomization to discordant pairs. Using artificial intelligence for systematic review: the example of elicit. A flexible framework for local-level estimation of the effective reproductive number in geographic regions with sparse data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1