Position-based assessment of head impact frequency, severity, type, and location in high school American football.

IF 4.3 3区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Frontiers in Bioengineering and Biotechnology Pub Date : 2025-01-14 eCollection Date: 2024-01-01 DOI:10.3389/fbioe.2024.1500786
Amirhossein Bagherian, Alireza Abbasi Ghiri, Mohammadreza Ramzanpour, James Wallace, Sammy Elashy, Morteza Seidi, Marzieh Memar
{"title":"Position-based assessment of head impact frequency, severity, type, and location in high school American football.","authors":"Amirhossein Bagherian, Alireza Abbasi Ghiri, Mohammadreza Ramzanpour, James Wallace, Sammy Elashy, Morteza Seidi, Marzieh Memar","doi":"10.3389/fbioe.2024.1500786","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Research on head impact characteristics, especially position-specific investigations in football, has predominantly focused on collegiate and professional levels, leaving a gap in understanding the risks faced by high school players. Therefore, this study aimed to investigate the effect of three factors-player position, impact location, and impact type-on the frequency, severity, and characteristics of impacts in high school American football. Additionally, we examined whether and how player position influences the distribution of impact locations and types.</p><p><strong>Methods: </strong>Sixteen high school football players aged 14 to 17 participated in this study. Validated mouthguard sensors measured head impact kinematics, including linear acceleration, angular acceleration, and angular velocity across ten games, and were used to identify impact locations on the head. Video recordings verified true impacts, player position, and impact type at the moment of each recorded impact. Head impact kinematics were input into a head finite element model to determine the 95th percentile of the maximum principal strain and strain rate. Several novel and systematic approaches, such as normalization, binning, and clustering, were introduced and utilized to investigate the frequency and severity of head impacts across the three aforementioned factors while addressing some of the limitations of previous methodologies in the field. To that end, the number of recorded impacts for each player position during each game was divided by the number of players in that position, and then averaged across ten games. Instead of averaging, impacts were categorized into four severity bins: low, mid-low, mid-high and high. Clusters for the three factors were also identified according to the characteristics of impacts.</p><p><strong>Results and discussion: </strong>Results revealed that offensive linemen and running backs experienced a higher normalized frequency and more severe impacts across all head kinematics and brain tissue deformation parameters. Frontal impacts, resulting from \"head-to-head\" impacts, were the most frequent and severe impact locations. The distributions of impact location and type for each specific position were distinct. Offensive linemen had the highest proportion of frontal impacts, while quarterbacks and centerbacks had more impacts at the rear location. These findings can inform interventions in game regulations, training practices, and helmet design to mitigate injury risks in high school football.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"12 ","pages":"1500786"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772367/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2024.1500786","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Research on head impact characteristics, especially position-specific investigations in football, has predominantly focused on collegiate and professional levels, leaving a gap in understanding the risks faced by high school players. Therefore, this study aimed to investigate the effect of three factors-player position, impact location, and impact type-on the frequency, severity, and characteristics of impacts in high school American football. Additionally, we examined whether and how player position influences the distribution of impact locations and types.

Methods: Sixteen high school football players aged 14 to 17 participated in this study. Validated mouthguard sensors measured head impact kinematics, including linear acceleration, angular acceleration, and angular velocity across ten games, and were used to identify impact locations on the head. Video recordings verified true impacts, player position, and impact type at the moment of each recorded impact. Head impact kinematics were input into a head finite element model to determine the 95th percentile of the maximum principal strain and strain rate. Several novel and systematic approaches, such as normalization, binning, and clustering, were introduced and utilized to investigate the frequency and severity of head impacts across the three aforementioned factors while addressing some of the limitations of previous methodologies in the field. To that end, the number of recorded impacts for each player position during each game was divided by the number of players in that position, and then averaged across ten games. Instead of averaging, impacts were categorized into four severity bins: low, mid-low, mid-high and high. Clusters for the three factors were also identified according to the characteristics of impacts.

Results and discussion: Results revealed that offensive linemen and running backs experienced a higher normalized frequency and more severe impacts across all head kinematics and brain tissue deformation parameters. Frontal impacts, resulting from "head-to-head" impacts, were the most frequent and severe impact locations. The distributions of impact location and type for each specific position were distinct. Offensive linemen had the highest proportion of frontal impacts, while quarterbacks and centerbacks had more impacts at the rear location. These findings can inform interventions in game regulations, training practices, and helmet design to mitigate injury risks in high school football.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Bioengineering and Biotechnology
Frontiers in Bioengineering and Biotechnology Chemical Engineering-Bioengineering
CiteScore
8.30
自引率
5.30%
发文量
2270
审稿时长
12 weeks
期刊介绍: The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs. In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.
期刊最新文献
Evaluating the advancements in protein language models for encoding strategies in protein function prediction: a comprehensive review. Impacts of surface wear of attachments on maxillary canine distalization with clear aligners: a three-dimensional finite element study. Placement of an elastic, biohybrid patch in a model of right heart failure with pulmonary artery banding. Cell clone selection-impact of operation modes and medium exchange strategies on clone ranking. Harnessing nanotechnology for cancer treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1