Susanna Nencetti, Doretta Cuffaro, Lidia Ciccone, Alessio Nocentini, Miriana Di Stefano, Giulio Poli, Marco Macchia, Tiziano Tuccinardi, Elisa Nuti, Claudiu T Supuran, Armando Rossello, Elisabetta Orlandini
{"title":"A series of benzensulfonamide derivatives as new potent carbonic anhydrase IX and XII inhibitors.","authors":"Susanna Nencetti, Doretta Cuffaro, Lidia Ciccone, Alessio Nocentini, Miriana Di Stefano, Giulio Poli, Marco Macchia, Tiziano Tuccinardi, Elisa Nuti, Claudiu T Supuran, Armando Rossello, Elisabetta Orlandini","doi":"10.1080/17568919.2025.2453420","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>Human carbonic anhydrases (hCAs) are involved in many physiological processes including respiration, pH control, ion transport, bone resorption, and gastric fluid secretion. Recently, CA IX and CA XII have been studied for their role in cancer diseases, motivating the design of inhibitors of these isoforms.</p><p><strong>Material and method: </strong>Here, we used the tail approach to design a new series of monoaryl (<b>1a-i</b>) and bicyclic (<b>1j-n</b>) benzensulfonamide derivatives CA IX and CA XII inhibitors. All synthesized compounds were investigated toward a panel of hCAs, and most of them exhibited potent CA inhibitory activity for CA II, CA IX and CA XII with K<sub>i</sub> values. <i>In silico</i> studies were performed to investigate the binding mode between inhibitors and CA.</p><p><strong>Results and conclusion: </strong>The best compound was <b>1i</b> that showed a low nanomolar range of K<sub>i</sub> value as CA inhibitor (K<sub>i</sub> = 9.4, 5.6 and 6.3 nM hCA II, IX and XII, respectively).</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"271-285"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792798/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17568919.2025.2453420","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: Human carbonic anhydrases (hCAs) are involved in many physiological processes including respiration, pH control, ion transport, bone resorption, and gastric fluid secretion. Recently, CA IX and CA XII have been studied for their role in cancer diseases, motivating the design of inhibitors of these isoforms.
Material and method: Here, we used the tail approach to design a new series of monoaryl (1a-i) and bicyclic (1j-n) benzensulfonamide derivatives CA IX and CA XII inhibitors. All synthesized compounds were investigated toward a panel of hCAs, and most of them exhibited potent CA inhibitory activity for CA II, CA IX and CA XII with Ki values. In silico studies were performed to investigate the binding mode between inhibitors and CA.
Results and conclusion: The best compound was 1i that showed a low nanomolar range of Ki value as CA inhibitor (Ki = 9.4, 5.6 and 6.3 nM hCA II, IX and XII, respectively).
期刊介绍:
Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.