Developing a novel model for predicting overall survival in late-onset colon adenocarcinoma patients based on LODDS: a study based on the SEER database and external validation.

IF 2.8 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM Discover. Oncology Pub Date : 2025-01-29 DOI:10.1007/s12672-025-01849-0
Chen Chen, Heng-Bo Xia, Wei-Wei Yuan, Meng-Ci Zhou, Xue Zhang, A-Man Xu
{"title":"Developing a novel model for predicting overall survival in late-onset colon adenocarcinoma patients based on LODDS: a study based on the SEER database and external validation.","authors":"Chen Chen, Heng-Bo Xia, Wei-Wei Yuan, Meng-Ci Zhou, Xue Zhang, A-Man Xu","doi":"10.1007/s12672-025-01849-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>To construct a predictive model based on the LODDS stage established for patients with late-onset colon adenocarcinoma to enhance survival stratification.</p><p><strong>Methods: </strong>Late-onset colon adenocarcinoma data were obtained from the public database. After determining the optimal LODDS truncation value for the training set via X-tile software, we created a new staging system by integrating the T stage and M stage. Nomograms of the prognostic model were created after Cox analyses identified independent risk factors for overall survival (OS) and cause-specific survival (CSS) and were validated internally and externally. The efficacy of the nomograms was assessed by calibration, time-dependent area under the curve (AUC) and decision curve analysis (DCA). Finally, the prognoses of the patients were compared by plotting survival curves on the basis of risk scores.</p><p><strong>Results: </strong>A total of 103,291 and 100 patients with late-onset colon adenocarcinoma (50-80 years old) were screened from the Surveillance, Epidemiology, and End Results (SEER) and The Cancer Genome Atlas (TCGA) databases, respectively. Cox regression analysis revealed independent risk factors for OS and CSS, including age, gender, race, size, LODDS stage, PLN stage, LNR stage, and TNM stage. A comparison of the four models constructed on the basis of different stages revealed that the model constructed with the LODDS stage had the minimum AIC (Akaike information criterion), maximum C-index (concordance index) and time-dependent AUC. Nomograms based on the LODDS stage were constructed and successfully validated for accuracy and clinical utility.</p><p><strong>Conclusion: </strong>For patients with late-onset colon adenocarcinoma, LODDS may achieve optimal predictive performance. Furthermore, compared to the 8th edition of the AJCC classification system, the nomogram based on LODDS stage may demonstrate superior survival prediction capabilities.</p>","PeriodicalId":11148,"journal":{"name":"Discover. Oncology","volume":"16 1","pages":"99"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780043/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover. Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12672-025-01849-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: To construct a predictive model based on the LODDS stage established for patients with late-onset colon adenocarcinoma to enhance survival stratification.

Methods: Late-onset colon adenocarcinoma data were obtained from the public database. After determining the optimal LODDS truncation value for the training set via X-tile software, we created a new staging system by integrating the T stage and M stage. Nomograms of the prognostic model were created after Cox analyses identified independent risk factors for overall survival (OS) and cause-specific survival (CSS) and were validated internally and externally. The efficacy of the nomograms was assessed by calibration, time-dependent area under the curve (AUC) and decision curve analysis (DCA). Finally, the prognoses of the patients were compared by plotting survival curves on the basis of risk scores.

Results: A total of 103,291 and 100 patients with late-onset colon adenocarcinoma (50-80 years old) were screened from the Surveillance, Epidemiology, and End Results (SEER) and The Cancer Genome Atlas (TCGA) databases, respectively. Cox regression analysis revealed independent risk factors for OS and CSS, including age, gender, race, size, LODDS stage, PLN stage, LNR stage, and TNM stage. A comparison of the four models constructed on the basis of different stages revealed that the model constructed with the LODDS stage had the minimum AIC (Akaike information criterion), maximum C-index (concordance index) and time-dependent AUC. Nomograms based on the LODDS stage were constructed and successfully validated for accuracy and clinical utility.

Conclusion: For patients with late-onset colon adenocarcinoma, LODDS may achieve optimal predictive performance. Furthermore, compared to the 8th edition of the AJCC classification system, the nomogram based on LODDS stage may demonstrate superior survival prediction capabilities.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Discover. Oncology
Discover. Oncology Medicine-Endocrinology, Diabetes and Metabolism
CiteScore
2.40
自引率
9.10%
发文量
122
审稿时长
5 weeks
期刊最新文献
KLF5 promotes esophageal squamous cell carcinoma radioresistance by targeting the Keap1-Nrf2 pathway. Prediction of biochemical prostate cancer recurrence from any Gleason score using robust tissue structure and clinically available information. Sulfatase modifying factor 2 as a predictive biomarker for urothelial carcinoma. Genetic advancements in breast cancer treatment: a review. GGCT participates in the malignant process of hepatocellular cancer cells by regulating the PTEN/PI3K/AKT pathway through binding to EZH2.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1