Gaopeng Guan, Jie Liu, Qin Zhang, Meiqi He, Hong Liu, Ke Chen, Xinxing Wan, Ping Jin
{"title":"NFAT5 exacerbates β-cell ferroptosis by suppressing the transcription of PRDX2 in obese type 2 diabetes mellitus.","authors":"Gaopeng Guan, Jie Liu, Qin Zhang, Meiqi He, Hong Liu, Ke Chen, Xinxing Wan, Ping Jin","doi":"10.1007/s00018-024-05563-y","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic β-cell damage is a critical pathological mechanism in the progression of obese type 2 diabetes mellitus (T2DM). However, the exact underlying mechanism remains unclear. We established an obese T2DM mouse model via high-fat diet feeding. The protein expression profiles of pancreatic tissues from normal and obese T2DM mice were analyzed, revealing that nuclear factor of activated T cells 5 (NFAT5) and ferroptosis are potential mediators and mechanisms of β-cell damage in obese T2DM mice. In vitro, high glucose and palmitate treatment resulted in increased NFAT5 expression and nuclear translocation in MIN6 cells. Inhibition of NFAT5 expression by shRNA significantly reduced ferroptosis and improved the reduction in insulin secretion in palmitic acid and high glucose (PG)-treated MIN6 cells. Luciferase reporter and chromatin immunoprecipitation (ChIP) assays confirmed the ability of NFAT5 to bind to the peroxiredoxin 2 (PRDX2) promoter, leading to the downregulation of PRDX2 transcription. Subsequent rescue experiments confirmed that NFAT5 is involved in PG-induced ferroptosis in MIN6 cells by inhibiting the expression of PRDX2. Finally, we demonstrated that the use of the AAV8-RIP2-miR30-shNFAT5 vector to specifically inhibit the expression of NFAT5 in β-cells significantly diminishes ferroptosis in obese T2DM mice, thereby increasing insulin secretion and improving abnormal glucose tolerance. These findings collectively highlight the therapeutic potential of targeting NFAT5 in β cells to counteract obesity-induced T2DM.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"64"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775373/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-024-05563-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pancreatic β-cell damage is a critical pathological mechanism in the progression of obese type 2 diabetes mellitus (T2DM). However, the exact underlying mechanism remains unclear. We established an obese T2DM mouse model via high-fat diet feeding. The protein expression profiles of pancreatic tissues from normal and obese T2DM mice were analyzed, revealing that nuclear factor of activated T cells 5 (NFAT5) and ferroptosis are potential mediators and mechanisms of β-cell damage in obese T2DM mice. In vitro, high glucose and palmitate treatment resulted in increased NFAT5 expression and nuclear translocation in MIN6 cells. Inhibition of NFAT5 expression by shRNA significantly reduced ferroptosis and improved the reduction in insulin secretion in palmitic acid and high glucose (PG)-treated MIN6 cells. Luciferase reporter and chromatin immunoprecipitation (ChIP) assays confirmed the ability of NFAT5 to bind to the peroxiredoxin 2 (PRDX2) promoter, leading to the downregulation of PRDX2 transcription. Subsequent rescue experiments confirmed that NFAT5 is involved in PG-induced ferroptosis in MIN6 cells by inhibiting the expression of PRDX2. Finally, we demonstrated that the use of the AAV8-RIP2-miR30-shNFAT5 vector to specifically inhibit the expression of NFAT5 in β-cells significantly diminishes ferroptosis in obese T2DM mice, thereby increasing insulin secretion and improving abnormal glucose tolerance. These findings collectively highlight the therapeutic potential of targeting NFAT5 in β cells to counteract obesity-induced T2DM.
期刊介绍:
Journal Name: Cellular and Molecular Life Sciences (CMLS)
Location: Basel, Switzerland
Focus:
Multidisciplinary journal
Publishes research articles, reviews, multi-author reviews, and visions & reflections articles
Coverage:
Latest aspects of biological and biomedical research
Areas include:
Biochemistry and molecular biology
Cell biology
Molecular and cellular aspects of biomedicine
Neuroscience
Pharmacology
Immunology
Additional Features:
Welcomes comments on any article published in CMLS
Accepts suggestions for topics to be covered