{"title":"Automatic multimodal registration of cone-beam computed tomography and intraoral scans: a systematic review and meta-analysis.","authors":"Qianhan Zheng, Yongjia Wu, Jiahao Chen, Xiaozhe Wang, Mengqi Zhou, Huimin Li, Jiaqi Lin, Weifang Zhang, Xuepeng Chen","doi":"10.1007/s00784-025-06183-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To evaluate recent advances in the automatic multimodal registration of cone-beam computed tomography (CBCT) and intraoral scans (IOS) and their clinical significance in dentistry.</p><p><strong>Methods: </strong>A comprehensive literature search was conducted in October 2024 across the PubMed, Web of Science, and IEEE Xplore databases, including studies that were published in the past decade. The inclusion criteria were as follows: English-language studies, randomized and nonrandomized controlled trials, cohort studies, case-control studies, cross-sectional studies, and retrospective studies.</p><p><strong>Results: </strong>Of the 493 articles identified, 22 met the inclusion criteria. Among these, 14 studies used geometry-based methods, 7 used artificial intelligence (AI) techniques, and 1 compared the accuracy of both approaches. Geometry-based methods primarily utilize two-stage coarse-to-fine registration algorithms, which require relatively fewer computational resources. In contrast, AI methods leverage advanced deep learning models, achieving significant improvements in automation and robustness.</p><p><strong>Conclusions: </strong>Recent advances in CBCT and IOS registration technologies have considerably increased the efficiency and accuracy of 3D dental modelling, and these technologies show promise for application in orthodontics, implantology, and oral surgery. Geometry-based algorithms deliver reliable performance with low computational demand, whereas AI-driven approaches demonstrate significant potential for achieving fully automated and highly accurate registration. Future research should focus on challenges such as unstable registration landmarks or limited dataset diversity, to ensure their stability in complex clinical scenarios.</p>","PeriodicalId":10461,"journal":{"name":"Clinical Oral Investigations","volume":"29 2","pages":"97"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Oral Investigations","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00784-025-06183-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: To evaluate recent advances in the automatic multimodal registration of cone-beam computed tomography (CBCT) and intraoral scans (IOS) and their clinical significance in dentistry.
Methods: A comprehensive literature search was conducted in October 2024 across the PubMed, Web of Science, and IEEE Xplore databases, including studies that were published in the past decade. The inclusion criteria were as follows: English-language studies, randomized and nonrandomized controlled trials, cohort studies, case-control studies, cross-sectional studies, and retrospective studies.
Results: Of the 493 articles identified, 22 met the inclusion criteria. Among these, 14 studies used geometry-based methods, 7 used artificial intelligence (AI) techniques, and 1 compared the accuracy of both approaches. Geometry-based methods primarily utilize two-stage coarse-to-fine registration algorithms, which require relatively fewer computational resources. In contrast, AI methods leverage advanced deep learning models, achieving significant improvements in automation and robustness.
Conclusions: Recent advances in CBCT and IOS registration technologies have considerably increased the efficiency and accuracy of 3D dental modelling, and these technologies show promise for application in orthodontics, implantology, and oral surgery. Geometry-based algorithms deliver reliable performance with low computational demand, whereas AI-driven approaches demonstrate significant potential for achieving fully automated and highly accurate registration. Future research should focus on challenges such as unstable registration landmarks or limited dataset diversity, to ensure their stability in complex clinical scenarios.
期刊介绍:
The journal Clinical Oral Investigations is a multidisciplinary, international forum for publication of research from all fields of oral medicine. The journal publishes original scientific articles and invited reviews which provide up-to-date results of basic and clinical studies in oral and maxillofacial science and medicine. The aim is to clarify the relevance of new results to modern practice, for an international readership. Coverage includes maxillofacial and oral surgery, prosthetics and restorative dentistry, operative dentistry, endodontics, periodontology, orthodontics, dental materials science, clinical trials, epidemiology, pedodontics, oral implant, preventive dentistiry, oral pathology, oral basic sciences and more.