Musculoskeletal model predictions sensitivity to upper body mass scaling during gait.

IF 7 2区 医学 Q1 BIOLOGY Computers in biology and medicine Pub Date : 2025-03-01 Epub Date: 2025-01-27 DOI:10.1016/j.compbiomed.2025.109739
Abdul Aziz Vaqar Hulleck, Muhammad Abdullah, AbdelSalam Tareq Alkhalaileh, Tao Liu, Dhanya Menoth Mohan, Rateb Katmah, Kinda Khalaf, Marwan El-Rich
{"title":"Musculoskeletal model predictions sensitivity to upper body mass scaling during gait.","authors":"Abdul Aziz Vaqar Hulleck, Muhammad Abdullah, AbdelSalam Tareq Alkhalaileh, Tao Liu, Dhanya Menoth Mohan, Rateb Katmah, Kinda Khalaf, Marwan El-Rich","doi":"10.1016/j.compbiomed.2025.109739","DOIUrl":null,"url":null,"abstract":"<p><p>Musculoskeletal modeling based on inverse dynamics provides a cost-effective non-invasive means for calculating intersegmental joint reaction forces and moments, solely relying on kinematic data, easily obtained from smart wearables. On the other hand, the accuracy and precision of such models strongly hinge upon the selected scaling methodology tailored to subject-specific data. This study investigates the impact of upper body mass distribution on internal and external kinetics computed using a comprehensive musculoskeletal model during level walking in both normal weight and obese individuals. Human motion data was collected using seventeen body worn inertial measuring units for nineteen (19) healthy subjects. The results indicate that variations in segmental masses and centers of mass, resulting from diverse mass scaling techniques, significantly affect ground reaction force estimations in obese subjects, particularly in the vertical component, with a root mean square error (RMSE) of 54.7 ± 23.8 %BW; followed by 12.3 ± 8.0 %BW (medio-lateral); and 6.2 ± 3.2 %BW (antero-posterior). The vertical component of hip, knee, and ankle joint reaction forces also exhibit sensitivity to personalized mass distribution variations. Importantly, the degree of deviation in model predictions increases with body mass index. Statistical analysis using single sample Wilcoxon-Signed Rank test for non-normal data and t-test for normal data, revealed significant differences (p < 0.05) in the computed errors in kinetic parameters between the two scaling approaches. The body shape-based scaling approach significantly impacts musculoskeletal modeling in clinical applications where the upper body mass distribution is crucial, such as in spinal deformities, obesity, and low back pain. This approach accounts for the body shape inherent variability within the same BMI category and enhances the predicted joint kinetics.</p>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"186 ","pages":"109739"},"PeriodicalIF":7.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.compbiomed.2025.109739","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Musculoskeletal modeling based on inverse dynamics provides a cost-effective non-invasive means for calculating intersegmental joint reaction forces and moments, solely relying on kinematic data, easily obtained from smart wearables. On the other hand, the accuracy and precision of such models strongly hinge upon the selected scaling methodology tailored to subject-specific data. This study investigates the impact of upper body mass distribution on internal and external kinetics computed using a comprehensive musculoskeletal model during level walking in both normal weight and obese individuals. Human motion data was collected using seventeen body worn inertial measuring units for nineteen (19) healthy subjects. The results indicate that variations in segmental masses and centers of mass, resulting from diverse mass scaling techniques, significantly affect ground reaction force estimations in obese subjects, particularly in the vertical component, with a root mean square error (RMSE) of 54.7 ± 23.8 %BW; followed by 12.3 ± 8.0 %BW (medio-lateral); and 6.2 ± 3.2 %BW (antero-posterior). The vertical component of hip, knee, and ankle joint reaction forces also exhibit sensitivity to personalized mass distribution variations. Importantly, the degree of deviation in model predictions increases with body mass index. Statistical analysis using single sample Wilcoxon-Signed Rank test for non-normal data and t-test for normal data, revealed significant differences (p < 0.05) in the computed errors in kinetic parameters between the two scaling approaches. The body shape-based scaling approach significantly impacts musculoskeletal modeling in clinical applications where the upper body mass distribution is crucial, such as in spinal deformities, obesity, and low back pain. This approach accounts for the body shape inherent variability within the same BMI category and enhances the predicted joint kinetics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
期刊最新文献
Brain tumour histopathology through the lens of deep learning: A systematic review. Detection, identification and removing of artifacts from sEMG signals: Current studies and future challenges. TinyML and edge intelligence applications in cardiovascular disease: A survey. A comprehensive scoping review on machine learning-based fetal echocardiography analysis. A semi-automated tool for digital and mechanical articulators comparative analysis of condylar path elements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1