Internal transcribed spacer metagenomics data unravelling the core fungal community structure residing the wheat and maize rhizosphere.

IF 1 Q3 MULTIDISCIPLINARY SCIENCES Data in Brief Pub Date : 2025-01-04 eCollection Date: 2025-02-01 DOI:10.1016/j.dib.2025.111269
Sadia Latif, Rizwana Kousar, Anum Fatima, Naeem Khan, Hina Fatimah
{"title":"Internal transcribed spacer metagenomics data unravelling the core fungal community structure residing the wheat and maize rhizosphere.","authors":"Sadia Latif, Rizwana Kousar, Anum Fatima, Naeem Khan, Hina Fatimah","doi":"10.1016/j.dib.2025.111269","DOIUrl":null,"url":null,"abstract":"<p><p>Plants are colonized by a vast array of microorganisms that outstrip plant cell densities and genes, thus referred to as plant's second genome or extended genome. The microbial communities exert a significant influence on the vigor, growth, development and productivity of plants by supporting nutrient acquisition, organic matter decomposition and tolerance against biotic and abiotic stresses such as heat, high salt, drought and disease, by regulating plant defense responses. The rhizosphere is a complex micro-ecological zone in the direct vicinity of plant roots and is considered a hotspot of microbial diversity. The exploration and understanding of the rhizosphere microbes can be valuable in sustainable agriculture. The present dataset aimed to reveal the core fungal community residing in the rhizosphere of wheat ( <b><i>Triticum aestivum</i></b> L.) and maize ( <b><i>Zea mays</i></b> L.). The rhizosphere fungal communities were explored via amplicon sequencing of the Internal Transcribed Spacer (ITS) region using the IonS5<sup>TM</sup>XL sequencing platform. The data obtained were filtered and the high-quality reads were clustered into Microbial Operational Taxonomic Units (OTUs) at 97 % similarity. Further, the data were subjected to alpha and beta diversity analysis. The OTUs obtained from the wheat rhizosphere soils of Kallar Syedian (TA.KS), Islamabad (TA.ISB) and Mirpur Azad Kashmir (TA.MAK) were 603, 513 and 424, respectively, whereas 616 OTUs were found in the maize rhizosphere soil of Kallar Syedian (ZM.KS). The major fungal phyla inhabiting the rhizosphere soils were Ascomycota, accounting for 94 %, 97 %, 95 % and 90 % of the fungal community in ZM.KS, TA.KS, TA.MAK and TA.ISB, respectively. Alpha and beta diversity analysis depicted the presence of considerable variations in the relative abundance of fungal groups residing in the rhizosphere soils. The dataset obtained can be employed in meta-analysis studies that will pave the way toward understanding the core fungal community structure and will directly aid in enhancing crop productivity through rhizosphere engineering.</p>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"58 ","pages":"111269"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772148/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.dib.2025.111269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Plants are colonized by a vast array of microorganisms that outstrip plant cell densities and genes, thus referred to as plant's second genome or extended genome. The microbial communities exert a significant influence on the vigor, growth, development and productivity of plants by supporting nutrient acquisition, organic matter decomposition and tolerance against biotic and abiotic stresses such as heat, high salt, drought and disease, by regulating plant defense responses. The rhizosphere is a complex micro-ecological zone in the direct vicinity of plant roots and is considered a hotspot of microbial diversity. The exploration and understanding of the rhizosphere microbes can be valuable in sustainable agriculture. The present dataset aimed to reveal the core fungal community residing in the rhizosphere of wheat ( Triticum aestivum L.) and maize ( Zea mays L.). The rhizosphere fungal communities were explored via amplicon sequencing of the Internal Transcribed Spacer (ITS) region using the IonS5TMXL sequencing platform. The data obtained were filtered and the high-quality reads were clustered into Microbial Operational Taxonomic Units (OTUs) at 97 % similarity. Further, the data were subjected to alpha and beta diversity analysis. The OTUs obtained from the wheat rhizosphere soils of Kallar Syedian (TA.KS), Islamabad (TA.ISB) and Mirpur Azad Kashmir (TA.MAK) were 603, 513 and 424, respectively, whereas 616 OTUs were found in the maize rhizosphere soil of Kallar Syedian (ZM.KS). The major fungal phyla inhabiting the rhizosphere soils were Ascomycota, accounting for 94 %, 97 %, 95 % and 90 % of the fungal community in ZM.KS, TA.KS, TA.MAK and TA.ISB, respectively. Alpha and beta diversity analysis depicted the presence of considerable variations in the relative abundance of fungal groups residing in the rhizosphere soils. The dataset obtained can be employed in meta-analysis studies that will pave the way toward understanding the core fungal community structure and will directly aid in enhancing crop productivity through rhizosphere engineering.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Data in Brief
Data in Brief MULTIDISCIPLINARY SCIENCES-
CiteScore
3.10
自引率
0.00%
发文量
996
审稿时长
70 days
期刊介绍: Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.
期刊最新文献
A global gross primary productivity of sunlit and shaded canopies dataset from 2002 to 2020 via embedding random forest into two-leaf light use efficiency model. Dataset of keywords used by European political parties on Facebook. IDDMSLD: An image dataset for detecting Malabar spinach leaf diseases. The media framing dataset: Analyzing news narratives in Mexico and Colombia. Transcriptome datasets of salt-stressed tomato plants treated with zinc oxide nanoparticles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1