FoxO1 promotes high glucose-induced inflammation and cataract formation via JAK1/STAT1.

Yike Li, An-Peng Pan, Yishan Ye, Xu Shao, Ruixue Tu, Yang Liu, A-Yong Yu
{"title":"FoxO1 promotes high glucose-induced inflammation and cataract formation via JAK1/STAT1.","authors":"Yike Li, An-Peng Pan, Yishan Ye, Xu Shao, Ruixue Tu, Yang Liu, A-Yong Yu","doi":"10.1007/s00417-025-06744-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To investigate whether in diabetic cataract (DC), FoxO1 regulates high glucose (HG)-induced activation of NLRC4/IL-6 inflammatory mediators in human lens epithelial cells (SRA01/04) via the JAK1/STAT1 pathway, leading to cataract formation.</p><p><strong>Methods: </strong>Expression levels of FoxO1, inflammatory factor IL-6 and inflammatory vesicle NLRC4 were examined in SRA01/04 under high glucose (HG) stress at 25-150 mM. Rat lenses were also cultured using HG medium with or without the addition of the FoxO1 inhibitor AS1842856 and the JAK1 agonist RO8191. 5.5 mM glucose concentration group (NG) was used as a control. Real-time PCR, Western blots, and immunofluorescent staining evaluated the mRNA and protein levels of FoxO1, NLRC4, and IL-6. Apoptosis, cell viability, and EDU Staining were also assessed.</p><p><strong>Results: </strong>HG stimulation induced elevated FoxO1 expression and caused NLRC4/IL-6 activation in a concentration-dependent manner. Whereas knockdown of FoxO1 inhibited the high expression of NLRC4/IL-6 inflammatory mediators in response to HG stimulation. The growth of SRA01/04 was inhibited under HG condition, and the cell proliferation ability was restored and even promoted by knocking out FoxO1. HG incubation of rat lens resulted in lens clouding and cataract formation, which was prevented by AS1842856 treatment and reversed by RO8191.</p><p><strong>Conclusion: </strong>FoxO1 positively regulates HG-induced SRA01/04 inflammatory activation through the JAK1/STAT1 pathway and promotes DC. This provides a feasible strategy for the treatment of diabetic cataract.</p>","PeriodicalId":12795,"journal":{"name":"Graefe’s Archive for Clinical and Experimental Ophthalmology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graefe’s Archive for Clinical and Experimental Ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00417-025-06744-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: To investigate whether in diabetic cataract (DC), FoxO1 regulates high glucose (HG)-induced activation of NLRC4/IL-6 inflammatory mediators in human lens epithelial cells (SRA01/04) via the JAK1/STAT1 pathway, leading to cataract formation.

Methods: Expression levels of FoxO1, inflammatory factor IL-6 and inflammatory vesicle NLRC4 were examined in SRA01/04 under high glucose (HG) stress at 25-150 mM. Rat lenses were also cultured using HG medium with or without the addition of the FoxO1 inhibitor AS1842856 and the JAK1 agonist RO8191. 5.5 mM glucose concentration group (NG) was used as a control. Real-time PCR, Western blots, and immunofluorescent staining evaluated the mRNA and protein levels of FoxO1, NLRC4, and IL-6. Apoptosis, cell viability, and EDU Staining were also assessed.

Results: HG stimulation induced elevated FoxO1 expression and caused NLRC4/IL-6 activation in a concentration-dependent manner. Whereas knockdown of FoxO1 inhibited the high expression of NLRC4/IL-6 inflammatory mediators in response to HG stimulation. The growth of SRA01/04 was inhibited under HG condition, and the cell proliferation ability was restored and even promoted by knocking out FoxO1. HG incubation of rat lens resulted in lens clouding and cataract formation, which was prevented by AS1842856 treatment and reversed by RO8191.

Conclusion: FoxO1 positively regulates HG-induced SRA01/04 inflammatory activation through the JAK1/STAT1 pathway and promotes DC. This provides a feasible strategy for the treatment of diabetic cataract.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.40
自引率
7.40%
发文量
398
审稿时长
3 months
期刊介绍: Graefe''s Archive for Clinical and Experimental Ophthalmology is a distinguished international journal that presents original clinical reports and clini-cally relevant experimental studies. Founded in 1854 by Albrecht von Graefe to serve as a source of useful clinical information and a stimulus for discussion, the journal has published articles by leading ophthalmologists and vision research scientists for more than a century. With peer review by an international Editorial Board and prompt English-language publication, Graefe''s Archive provides rapid dissemination of clinical and clinically related experimental information.
期刊最新文献
Reexamine the link between retinal layer thickness and cognitive function after correction of axial length: the Beijing Eye Study 2011. Comparison of the clinical outcomes after manual capsulorhexis on one eye and precision pulse capsulotomy on the other eye. Reply on comments on the paper "Descemet's membrane transplantation for the treatment of recurrent high myopic macular hole associated with retinal detachment". The rAAV2-ND1 gene therapy for Leber hereditary optic neuropathy. Adverse Events Associated with Devices for Incisional Glaucoma Surgery Performed with Implants as Reported to the FDA MAUDE Database.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1