Zhenzhen Chen , Lingyan Hu , Bingbing Xu , Zhihong Liu , Lingjun Zeng , Minxin Zhang , Haihong Tian , Hongtao Song
{"title":"In situ generation of Copper sulfide within Poly(lactic-co-glycolic acid): A strategy for Safer photothermal therapy in Triple-Negative breast cancer","authors":"Zhenzhen Chen , Lingyan Hu , Bingbing Xu , Zhihong Liu , Lingjun Zeng , Minxin Zhang , Haihong Tian , Hongtao Song","doi":"10.1016/j.ijpharm.2025.125287","DOIUrl":null,"url":null,"abstract":"<div><div>Copper sulfide nanoparticles (CuS NPs) have garnered significant attention in photothermal therapy (PTT) owing to their facile synthesis, biodegradability, stability, and excellent photothermal conversion efficiency. Nonetheless, their potential toxic effects have restricted their application. This research focuses on the encapsulation of CuS NPs with the biocompatible polymer poly(lactic-co-glycolic acid) (PLGA) to enhance their biocompatibility, thereby improving the efficacy and safety of PTT in the treatment of triple-negative breast cancer (TNBC). Three distinct methods, namely aqueous phase loading method, oil phase loading method, and “<em>in situ</em> reduction” method were employed to synthesize PLGA-coated CuS (CuS@PLGA) NPs to optimize the encapsulation rate of CuS. Among these, the CuS@PLGA NPs fabricated <em>via</em> the “<em>in situ</em> reduction” method demonstrated the highest encapsulation efficiency for CuS, achieving a rate of (90.4 ± 3.3)%. The resulting CuS@PLGA NPs exhibited high stability, excellent photothermal effect, and good tumor-targeting ability. Moreover, CuS@PLGA NPs demonstrated enhanced anti-tumor efficacy and biocompatibility compared to CuS NPs in both <em>in vitro</em> and <em>in vivo</em> experiments. Consequently, this study offers an effective and safety strategy for PTT treatment of TNBC.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"671 ","pages":"Article 125287"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517325001231","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Copper sulfide nanoparticles (CuS NPs) have garnered significant attention in photothermal therapy (PTT) owing to their facile synthesis, biodegradability, stability, and excellent photothermal conversion efficiency. Nonetheless, their potential toxic effects have restricted their application. This research focuses on the encapsulation of CuS NPs with the biocompatible polymer poly(lactic-co-glycolic acid) (PLGA) to enhance their biocompatibility, thereby improving the efficacy and safety of PTT in the treatment of triple-negative breast cancer (TNBC). Three distinct methods, namely aqueous phase loading method, oil phase loading method, and “in situ reduction” method were employed to synthesize PLGA-coated CuS (CuS@PLGA) NPs to optimize the encapsulation rate of CuS. Among these, the CuS@PLGA NPs fabricated via the “in situ reduction” method demonstrated the highest encapsulation efficiency for CuS, achieving a rate of (90.4 ± 3.3)%. The resulting CuS@PLGA NPs exhibited high stability, excellent photothermal effect, and good tumor-targeting ability. Moreover, CuS@PLGA NPs demonstrated enhanced anti-tumor efficacy and biocompatibility compared to CuS NPs in both in vitro and in vivo experiments. Consequently, this study offers an effective and safety strategy for PTT treatment of TNBC.
期刊介绍:
The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.