Experimental measurements of particle deposition in the human nasal airway.

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY International Journal of Pharmaceutics Pub Date : 2025-01-26 DOI:10.1016/j.ijpharm.2025.125280
Zhiwei Shen, Taye Tolu Mekonnen, Xinyu Cai, Liam Milton-McGurk, Hak-Kim Chan, Agisilaos Kourmatzis, Shaokoon Cheng
{"title":"Experimental measurements of particle deposition in the human nasal airway.","authors":"Zhiwei Shen, Taye Tolu Mekonnen, Xinyu Cai, Liam Milton-McGurk, Hak-Kim Chan, Agisilaos Kourmatzis, Shaokoon Cheng","doi":"10.1016/j.ijpharm.2025.125280","DOIUrl":null,"url":null,"abstract":"<p><p>Intranasal drug delivery is a promising non-invasive method for administering both local and systemic medications. While previous studies have extensively investigated the effects of particle size, airflow dynamics, and deposition locations on deposition efficiency, they have not focused on the thickness of deposited particles, which can significantly affect drug dissolution, absorption and therapeutic efficacy. This study investigates the deposition patterns of dry powder particles within the nasal airway, specifically examining how factors such as flow rates, particle size, and particle cohesiveness influence deposition patterns and their thickness. Using optical coherence tomography (OCT), this study assessed the deposition behaviour of three different lactose powders in a reconstructed nasal airway model at three key anatomical locations under varying flow rates (15, 35 and 55 L/min). Computational fluid dynamics (CFD) simulations were conducted to complement the experimental data, demonstrating the airflow dynamics in the nasal airway and highlighting recirculation zones that impact deposition patterns. The results revealed that the anterior section of the nasal airway is particularly effective at capturing particles, with localised flow patterns playing a critical role in particle accumulation. These flow patterns, combined with particle size and cohesiveness, are key factors in determining where and how particles cluster, leading to thicker deposition in specific areas of the nasal airway. This study addresses the gap in understanding how these factors influence deposition thickness and spatial distribution, ultimately contributing to the optimisation of nasal drug delivery systems.</p>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":" ","pages":"125280"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ijpharm.2025.125280","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Intranasal drug delivery is a promising non-invasive method for administering both local and systemic medications. While previous studies have extensively investigated the effects of particle size, airflow dynamics, and deposition locations on deposition efficiency, they have not focused on the thickness of deposited particles, which can significantly affect drug dissolution, absorption and therapeutic efficacy. This study investigates the deposition patterns of dry powder particles within the nasal airway, specifically examining how factors such as flow rates, particle size, and particle cohesiveness influence deposition patterns and their thickness. Using optical coherence tomography (OCT), this study assessed the deposition behaviour of three different lactose powders in a reconstructed nasal airway model at three key anatomical locations under varying flow rates (15, 35 and 55 L/min). Computational fluid dynamics (CFD) simulations were conducted to complement the experimental data, demonstrating the airflow dynamics in the nasal airway and highlighting recirculation zones that impact deposition patterns. The results revealed that the anterior section of the nasal airway is particularly effective at capturing particles, with localised flow patterns playing a critical role in particle accumulation. These flow patterns, combined with particle size and cohesiveness, are key factors in determining where and how particles cluster, leading to thicker deposition in specific areas of the nasal airway. This study addresses the gap in understanding how these factors influence deposition thickness and spatial distribution, ultimately contributing to the optimisation of nasal drug delivery systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.70
自引率
8.60%
发文量
951
审稿时长
72 days
期刊介绍: The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.
期刊最新文献
Follicle-stimulating hormone peptide-conjugated liposomes in the treatment of epithelial ovarian cancer through the induction of M2-to-M1 macrophage repolarization. Harnessing the power of inorganic nanoparticles for the management of TNBC. Stability and recrystallization of amorphous solid dispersions prepared by hot-melt extrusion and spray drying. Targeted nasal delivery of LNP-mRNAs aerosolised by Rayleigh breakup technology. Challenges and opportunities in targeting epigenetic mechanisms for pulmonary arterial hypertension treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1