A novel application perspective of the clinical-used drug verapamil on osteoporosis via targeting Txnip

IF 5.9 1区 医学 Q1 ORTHOPEDICS Journal of Orthopaedic Translation Pub Date : 2025-01-01 DOI:10.1016/j.jot.2024.10.006
Xiankun Cao , Kewei Rong , Yinghua Li , Pu Zhang , Kexin Liu , Lei Cui , Shaotian Fu , Qi Hua , Xiao Yang , Hang Zhang , Xiaofei Cheng , Peixiang Ma , Jie Zhao , An Qin
{"title":"A novel application perspective of the clinical-used drug verapamil on osteoporosis via targeting Txnip","authors":"Xiankun Cao ,&nbsp;Kewei Rong ,&nbsp;Yinghua Li ,&nbsp;Pu Zhang ,&nbsp;Kexin Liu ,&nbsp;Lei Cui ,&nbsp;Shaotian Fu ,&nbsp;Qi Hua ,&nbsp;Xiao Yang ,&nbsp;Hang Zhang ,&nbsp;Xiaofei Cheng ,&nbsp;Peixiang Ma ,&nbsp;Jie Zhao ,&nbsp;An Qin","doi":"10.1016/j.jot.2024.10.006","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>RANKL and SCLEROSTIN antibodies have provided a strong effective choice for treating osteoporosis in the past years, which suggested novel molecular target identification and therapeutic strategies development are important for the treatment of osteoporosis. The therapeutic effect of verapamil, a drug previously used for cardiovascular diseases, on diabetes was due to the inhibition of TXNIP expression, which has also been reported as a target in mice osteoporosis. Whether verapamil-inhibited TXNIP expression is related to osteoporosis and how it works on the molecular level is worthy to be explored.</div></div><div><h3>Methods</h3><div>The polymorphism genotyping analysis was performed on patients with different degrees of osteoporosis. The responsiveness of bone marrow-derived macrophage cells (bone marrow-derived mesenchymal stem cells) to verapamil was evaluated by CCK-8, TRAP staining assay (ALP and AR staining assay), Bone Resorption Assay, and RNA-Sequencing. The expression and cytoplasmic efflux of ChREBP were determined by western blotting and immunofluorescence. Bilateral ovariectomy models were created, rescued by verapamil injection and the effectiveness was evaluated by Micro-CT and Histological analysis.</div></div><div><h3>Results</h3><div>Here we discovered that rs7211 single nucleotide polymorphism (SNP) of <em>TXNIP</em> is closely associated with increased femur neck bone mineral density (BMD) and decreased osteoporosis rate, suggesting the importance of TXNIP in the development of osteoporosis. Verapamil suppresses <em>Txnip</em> expression, reduces bone turnover rate and thus rescues ovariectomy-induced mice bone loss. Mechanistically, verapamil promoted ChREBP cytoplasmic efflux, regulated Pparγ expression both mediating Txnip-MAPK, NF-<span><math><mrow><mi>κ</mi></mrow></math></span> B axis in osteoclasts, and suppressed the ChREBP-Txnip-Bmp2 axis in osteoblasts.</div></div><div><h3>Conclusions</h3><div>The results of our study show the correlation of rs7211 <em>TXNIP-T</em> allele with Chinese increased femur neck BMD and decreased osteoporosis rate. In addition, verapamil can rescue mice from osteoporosis by regulateing ChREBP, Pparγ-Txnip-MAPK, NF-<span><math><mrow><mi>κ</mi></mrow></math></span> B axis in osteoclasts and ChREBP-Txnip-Bmp2 axis in osteoblasts.</div></div><div><h3>The translational potential of this article</h3><div>The inhibition of Txnip by verapamil in osteoclasts and osteoblasts leads to low bone turnover and reduced bilateral ovariectomy-induced mice bone loss, which points out its great clinical translation potential on postmenopausal osteoporosis treatment.</div></div>","PeriodicalId":16636,"journal":{"name":"Journal of Orthopaedic Translation","volume":"50 ","pages":"Pages 158-173"},"PeriodicalIF":5.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773151/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Translation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214031X24001360","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

RANKL and SCLEROSTIN antibodies have provided a strong effective choice for treating osteoporosis in the past years, which suggested novel molecular target identification and therapeutic strategies development are important for the treatment of osteoporosis. The therapeutic effect of verapamil, a drug previously used for cardiovascular diseases, on diabetes was due to the inhibition of TXNIP expression, which has also been reported as a target in mice osteoporosis. Whether verapamil-inhibited TXNIP expression is related to osteoporosis and how it works on the molecular level is worthy to be explored.

Methods

The polymorphism genotyping analysis was performed on patients with different degrees of osteoporosis. The responsiveness of bone marrow-derived macrophage cells (bone marrow-derived mesenchymal stem cells) to verapamil was evaluated by CCK-8, TRAP staining assay (ALP and AR staining assay), Bone Resorption Assay, and RNA-Sequencing. The expression and cytoplasmic efflux of ChREBP were determined by western blotting and immunofluorescence. Bilateral ovariectomy models were created, rescued by verapamil injection and the effectiveness was evaluated by Micro-CT and Histological analysis.

Results

Here we discovered that rs7211 single nucleotide polymorphism (SNP) of TXNIP is closely associated with increased femur neck bone mineral density (BMD) and decreased osteoporosis rate, suggesting the importance of TXNIP in the development of osteoporosis. Verapamil suppresses Txnip expression, reduces bone turnover rate and thus rescues ovariectomy-induced mice bone loss. Mechanistically, verapamil promoted ChREBP cytoplasmic efflux, regulated Pparγ expression both mediating Txnip-MAPK, NF-κ B axis in osteoclasts, and suppressed the ChREBP-Txnip-Bmp2 axis in osteoblasts.

Conclusions

The results of our study show the correlation of rs7211 TXNIP-T allele with Chinese increased femur neck BMD and decreased osteoporosis rate. In addition, verapamil can rescue mice from osteoporosis by regulateing ChREBP, Pparγ-Txnip-MAPK, NF-κ B axis in osteoclasts and ChREBP-Txnip-Bmp2 axis in osteoblasts.

The translational potential of this article

The inhibition of Txnip by verapamil in osteoclasts and osteoblasts leads to low bone turnover and reduced bilateral ovariectomy-induced mice bone loss, which points out its great clinical translation potential on postmenopausal osteoporosis treatment.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Orthopaedic Translation
Journal of Orthopaedic Translation Medicine-Orthopedics and Sports Medicine
CiteScore
11.80
自引率
13.60%
发文量
91
审稿时长
29 days
期刊介绍: The Journal of Orthopaedic Translation (JOT) is the official peer-reviewed, open access journal of the Chinese Speaking Orthopaedic Society (CSOS) and the International Chinese Musculoskeletal Research Society (ICMRS). It is published quarterly, in January, April, July and October, by Elsevier.
期刊最新文献
Piezoelectric biomaterials for providing electrical stimulation in bone tissue engineering: Barium titanate Fibroblast growth factor receptor 3 mutation promotes HSPB6-mediated cuproptosis in hypochondroplasia by impairing chondrocyte autophagy T cell related osteoimmunology in fracture healing: Potential targets for augmenting bone regeneration Autologous osteoperiosteal transplantation achieves comparable repair effect and superior interface integration to autologous osteochondral transplantation in porcine osteochondral defects Vibration therapy as an intervention for trochanteric hip fractures – A randomized double-blinded, placebo-controlled trial
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1