Molecular and functional profiling unravels targetable vulnerabilities in colorectal cancer.

IF 6.6 2区 医学 Q1 Biochemistry, Genetics and Molecular Biology Molecular Oncology Pub Date : 2025-01-28 DOI:10.1002/1878-0261.13814
Efstathios-Iason Vlachavas, Konstantinos Voutetakis, Vivian Kosmidou, Spyridon Tsikalakis, Spyridon Roditis, Konstantinos Pateas, Ryangguk Kim, Kymberleigh Pagel, Stephan Wolf, Gregor Warsow, Antonia Dimitrakopoulou-Strauss, Georgios N Zografos, Alexander Pintzas, Johannes Betge, Olga Papadodima, Stefan Wiemann
{"title":"Molecular and functional profiling unravels targetable vulnerabilities in colorectal cancer.","authors":"Efstathios-Iason Vlachavas, Konstantinos Voutetakis, Vivian Kosmidou, Spyridon Tsikalakis, Spyridon Roditis, Konstantinos Pateas, Ryangguk Kim, Kymberleigh Pagel, Stephan Wolf, Gregor Warsow, Antonia Dimitrakopoulou-Strauss, Georgios N Zografos, Alexander Pintzas, Johannes Betge, Olga Papadodima, Stefan Wiemann","doi":"10.1002/1878-0261.13814","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer (CRC) patients with microsatellite-stable (MSS) tumors are mostly treated with chemotherapy. Clinical benefits of targeted therapies depend on mutational states and tumor location. Many tumors carry mutations in KRAS proto-oncogene, GTPase (KRAS) or B-Raf proto-oncogene, serine/threonine kinase (BRAF), rendering them more resistant to therapies. We performed whole-exome sequencing and RNA-Sequencing of 28 tumors of the Athens Comprehensive Cancer Center CRC cohort, and molecularly characterized CRC patients based on their microsatellite instability (MSI) status, single-nucleotide variations (SNVs)/copy number alterations (CNAs), and pathway/transcription factor activities at the individual patient level. Variants were classified using a computational score for integrative cancer variant annotation and prioritization. Complementing this with public multi-omics datasets, we identified activation of transforming growth factor beta (TGFβ) signaling to be more strongly activated in MSS patients, whereas Janus kinase (JAK)-signal transducer and activator of transcription (STAT) and mitogen-activated protein kinase (MAPK) molecular cascades were activated specifically in MSI tumors. We unraveled mechanisms consistently perturbed in the transcriptional and mutational circuits and identified Runt-related transcription factors (RUNX transcription factors) as putative biomarkers in CRC, given their role in the regulation of pathways involved in tumor progression and immune evasion. Assessing the immunogenicity of CRC tumors in the context of RAS/RAF mutations and MSI/MSS status revealed a critical impact that KRAS mutations have on immunogenicity, particularly in the MSS patient subgroup, with implications for diagnosis and treatment.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/1878-0261.13814","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Colorectal cancer (CRC) patients with microsatellite-stable (MSS) tumors are mostly treated with chemotherapy. Clinical benefits of targeted therapies depend on mutational states and tumor location. Many tumors carry mutations in KRAS proto-oncogene, GTPase (KRAS) or B-Raf proto-oncogene, serine/threonine kinase (BRAF), rendering them more resistant to therapies. We performed whole-exome sequencing and RNA-Sequencing of 28 tumors of the Athens Comprehensive Cancer Center CRC cohort, and molecularly characterized CRC patients based on their microsatellite instability (MSI) status, single-nucleotide variations (SNVs)/copy number alterations (CNAs), and pathway/transcription factor activities at the individual patient level. Variants were classified using a computational score for integrative cancer variant annotation and prioritization. Complementing this with public multi-omics datasets, we identified activation of transforming growth factor beta (TGFβ) signaling to be more strongly activated in MSS patients, whereas Janus kinase (JAK)-signal transducer and activator of transcription (STAT) and mitogen-activated protein kinase (MAPK) molecular cascades were activated specifically in MSI tumors. We unraveled mechanisms consistently perturbed in the transcriptional and mutational circuits and identified Runt-related transcription factors (RUNX transcription factors) as putative biomarkers in CRC, given their role in the regulation of pathways involved in tumor progression and immune evasion. Assessing the immunogenicity of CRC tumors in the context of RAS/RAF mutations and MSI/MSS status revealed a critical impact that KRAS mutations have on immunogenicity, particularly in the MSS patient subgroup, with implications for diagnosis and treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Oncology
Molecular Oncology Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
11.80
自引率
1.50%
发文量
203
审稿时长
10 weeks
期刊介绍: Molecular Oncology highlights new discoveries, approaches, and technical developments, in basic, clinical and discovery-driven translational cancer research. It publishes research articles, reviews (by invitation only), and timely science policy articles. The journal is now fully Open Access with all articles published over the past 10 years freely available.
期刊最新文献
Microglial reprogramming: a potential new frontier in enhancing immunotherapy for melanoma brain metastasis. Targeting PRAME directly or via EZH2 inhibition overcomes retinoid resistance and represents a novel therapy for keratinocyte carcinoma. Cell-free DNA aneuploidy score as a dynamic early response marker in prostate cancer. Escape from TGF-β-induced senescence promotes aggressive hallmarks in epithelial hepatocellular carcinoma cells. Revisiting CDKN2A dysregulation in Ewing sarcoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1