Ziyang Liu, Tianjiao Zeng, Xu Zhan, Xiaoling Zhang, Edmund Y Lam
{"title":"Generative approach for lensless imaging in low-light conditions.","authors":"Ziyang Liu, Tianjiao Zeng, Xu Zhan, Xiaoling Zhang, Edmund Y Lam","doi":"10.1364/OE.544875","DOIUrl":null,"url":null,"abstract":"<p><p>Lensless imaging offers a lightweight, compact alternative to traditional lens-based systems, ideal for exploration in space-constrained environments. However, the absence of a focusing lens and limited lighting in such environments often results in low-light conditions, where the measurements suffer from complex noise interference due to insufficient capture of photons. This study presents a robust reconstruction method for high-quality imaging in low-light scenarios, employing two complementary perspectives: model-driven and data-driven. First, we apply a physics-model-driven perspective to reconstruct the range space of the pseudo-inverse of the measurement model-as a first guidance to extract information in the noisy measurements. Then, we integrate a generative-model-based perspective to suppress residual noises-as the second guidance to suppress noises in the initial noisy results. Specifically, a learnable Wiener filter-based module generates an initial, noisy reconstruction. Then, for fast and, more importantly, stable generation of the clear image from the noisy version, we implement a modified conditional generative diffusion module. This module converts the raw image into the latent wavelet domain for efficiency and uses modified bidirectional training processes for stabilization. Simulations and real-world experiments demonstrate substantial improvements in overall visual quality, advancing lensless imaging in challenging low-light environments.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"33 2","pages":"3021-3039"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.544875","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Lensless imaging offers a lightweight, compact alternative to traditional lens-based systems, ideal for exploration in space-constrained environments. However, the absence of a focusing lens and limited lighting in such environments often results in low-light conditions, where the measurements suffer from complex noise interference due to insufficient capture of photons. This study presents a robust reconstruction method for high-quality imaging in low-light scenarios, employing two complementary perspectives: model-driven and data-driven. First, we apply a physics-model-driven perspective to reconstruct the range space of the pseudo-inverse of the measurement model-as a first guidance to extract information in the noisy measurements. Then, we integrate a generative-model-based perspective to suppress residual noises-as the second guidance to suppress noises in the initial noisy results. Specifically, a learnable Wiener filter-based module generates an initial, noisy reconstruction. Then, for fast and, more importantly, stable generation of the clear image from the noisy version, we implement a modified conditional generative diffusion module. This module converts the raw image into the latent wavelet domain for efficiency and uses modified bidirectional training processes for stabilization. Simulations and real-world experiments demonstrate substantial improvements in overall visual quality, advancing lensless imaging in challenging low-light environments.
期刊介绍:
Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.