{"title":"A simple plan strategy to optimize the biological effective dose delivered in robotic radiosurgery of vestibular schwannomas.","authors":"A Moutsatsos, E Pantelis","doi":"10.1088/1361-6560/adaf72","DOIUrl":null,"url":null,"abstract":"<p><p>Using the concept of biologically effective dose (BED), the effect of sublethal DNA damage repair (SLR) on the bio-efficacy of prolonged radiotherapy treatments can be quantified (BED<sub>SLR</sub>). Such treatments, lasting more than 20 min, are typically encountered in stereotactic radiosurgery (SRS) applications using the CyberKnife (CK) and Gamma knife systems. Evaluating the plan data from 45 Vestibular Schwannoma (VS) cases treated with single fraction CK-SRS, this work demonstrates a statistically significant correlation between the marginal BED<sub>SLR</sub>delivered to the target (<i>m-</i>BED<sub>SLR</sub>) and the ratio of the mean collimator size weighted by the fraction of total beams delivered with each collimator (wmCs), to the tumor volume (Tv). The correlation between<i>m-</i>BED<sub>SLR</sub>andwmCsTvdatasets was mathematically expressed by the power functionm-BEDSLR=85.21 (±1.7%)⋅(wmCsTv)(0.05±7%) enabling continuous<i>m-</i>BED<sub>SLR</sub>predictions. Using this formula, a specific range of<i>m-</i>BED<sub>SLR</sub>levels can<i>a priori</i>be targeted during treatment planning through proper selection of collimator size(s) for a given tumor volume. Inversely, for a selected set of collimators, the optimization range of<i>m-</i>BED<sub>SLR</sub>can be determined assuming that all beams are delivered with the smallest and largest collimator size. For single collimator cases or when the relative usage of each collimator size is known or estimated, a specific<i>m-</i>BED<sub>SLR</sub>level can be predicted within 3% uncertainty. The proposed equation is valid for the fixed CK collimators and a physical dose prescription (<i>D</i><sub>pr</sub>) of 13 Gy. For alternate<i>D</i><sub>pr</sub>in the range of 11-14 Gy, a linear relationship was found between relative changes of<i>m-</i>BED<sub>SLR</sub>(<i>D</i><sub>pr</sub>) and<i>D</i><sub>pr</sub>with respect to<i>m-</i>BED<sub>SLR</sub>(13 Gy) and 13 Gy, respectively. The proposed methodology is simple and easy to implement in the clinical setting allowing for optimization of the treatment's bio-effectiveness, in terms of the delivered BED, during treatment planning.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/adaf72","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Using the concept of biologically effective dose (BED), the effect of sublethal DNA damage repair (SLR) on the bio-efficacy of prolonged radiotherapy treatments can be quantified (BEDSLR). Such treatments, lasting more than 20 min, are typically encountered in stereotactic radiosurgery (SRS) applications using the CyberKnife (CK) and Gamma knife systems. Evaluating the plan data from 45 Vestibular Schwannoma (VS) cases treated with single fraction CK-SRS, this work demonstrates a statistically significant correlation between the marginal BEDSLRdelivered to the target (m-BEDSLR) and the ratio of the mean collimator size weighted by the fraction of total beams delivered with each collimator (wmCs), to the tumor volume (Tv). The correlation betweenm-BEDSLRandwmCsTvdatasets was mathematically expressed by the power functionm-BEDSLR=85.21 (±1.7%)⋅(wmCsTv)(0.05±7%) enabling continuousm-BEDSLRpredictions. Using this formula, a specific range ofm-BEDSLRlevels cana prioribe targeted during treatment planning through proper selection of collimator size(s) for a given tumor volume. Inversely, for a selected set of collimators, the optimization range ofm-BEDSLRcan be determined assuming that all beams are delivered with the smallest and largest collimator size. For single collimator cases or when the relative usage of each collimator size is known or estimated, a specificm-BEDSLRlevel can be predicted within 3% uncertainty. The proposed equation is valid for the fixed CK collimators and a physical dose prescription (Dpr) of 13 Gy. For alternateDprin the range of 11-14 Gy, a linear relationship was found between relative changes ofm-BEDSLR(Dpr) andDprwith respect tom-BEDSLR(13 Gy) and 13 Gy, respectively. The proposed methodology is simple and easy to implement in the clinical setting allowing for optimization of the treatment's bio-effectiveness, in terms of the delivered BED, during treatment planning.
期刊介绍:
The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry