Discovery of a Novel Lysinibacillus Species from Indonesian Peat Soil with Potent Anti Multidrug-Resistant Activity.

Q3 Agricultural and Biological Sciences Pakistan Journal of Biological Sciences Pub Date : 2025-01-01 DOI:10.3923/pjbs.2025.95.101
Dede Mahdiyah, Nur Hidayah, Putri Vidiasari Darsono, Bayu Hari Mukti
{"title":"Discovery of a Novel <i>Lysinibacillus</i> Species from Indonesian Peat Soil with Potent Anti Multidrug-Resistant Activity.","authors":"Dede Mahdiyah, Nur Hidayah, Putri Vidiasari Darsono, Bayu Hari Mukti","doi":"10.3923/pjbs.2025.95.101","DOIUrl":null,"url":null,"abstract":"<p><p>&lt;b&gt;Background and Objective:&lt;/b&gt; Peatlands are unique ecosystems rich in microbial diversity, including bacteria with potential antibiotic activity. This study focuses on the isolation and characterization of bacteria from Indonesian peat soil, particularly their potential to produce antibiotics against multidrug-resistant (MDR) pathogens, including Methicillin-Resistant &lt;i&gt;Staphylococcus aureus&lt;/i&gt; (MRSA). &lt;b&gt;Materials and Methods:&lt;/b&gt; Bacterial isolates were rejuvenated on nutrient agar and subjected to antimicrobial activity testing using the Bauer & Kirby diffusion method against MRSA. The bacterial strain exhibiting the strongest activity was further analyzed using 16S rRNA sequencing for genetic identification. Phylogenetic analysis was performed using NCBI BLAST, followed by a statistical comparison of inhibition zones to assess antimicrobial efficacy. &lt;b&gt;Results:&lt;/b&gt; Antimicrobial activity testing revealed that isolate 10 PS exhibited a larger inhibition zone against MRSA than the positive control, Ampicillin, indicating its strong antibiotic potential. Phylogenetic analysis further confirmed that the isolate belonged to the &lt;i&gt;Lysinibacillus&lt;/i&gt; genus, though significant branch divergence suggested it may represent a novel species. This isolate's lack of endospore production, typically characteristic of the genus, alongside its isolation from the unique Indonesian peatland ecosystem, suggests potential microbial adaptations to environmental pressures. &lt;b&gt;Conclusion:&lt;/b&gt; These findings highlight the potential of peat soil bacteria as a valuable source of novel antibiotics, particularly against MDR pathogens like MRSA. The proposed new species, isolate 10 PS (cataloged as SUB14736623), expands taxonomic knowledge of &lt;i&gt;Lysinibacillus&lt;/i&gt; and holds promise for developing natural antibiotic treatments.</p>","PeriodicalId":19800,"journal":{"name":"Pakistan Journal of Biological Sciences","volume":"28 2","pages":"95-101"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pakistan Journal of Biological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3923/pjbs.2025.95.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

<b>Background and Objective:</b> Peatlands are unique ecosystems rich in microbial diversity, including bacteria with potential antibiotic activity. This study focuses on the isolation and characterization of bacteria from Indonesian peat soil, particularly their potential to produce antibiotics against multidrug-resistant (MDR) pathogens, including Methicillin-Resistant <i>Staphylococcus aureus</i> (MRSA). <b>Materials and Methods:</b> Bacterial isolates were rejuvenated on nutrient agar and subjected to antimicrobial activity testing using the Bauer & Kirby diffusion method against MRSA. The bacterial strain exhibiting the strongest activity was further analyzed using 16S rRNA sequencing for genetic identification. Phylogenetic analysis was performed using NCBI BLAST, followed by a statistical comparison of inhibition zones to assess antimicrobial efficacy. <b>Results:</b> Antimicrobial activity testing revealed that isolate 10 PS exhibited a larger inhibition zone against MRSA than the positive control, Ampicillin, indicating its strong antibiotic potential. Phylogenetic analysis further confirmed that the isolate belonged to the <i>Lysinibacillus</i> genus, though significant branch divergence suggested it may represent a novel species. This isolate's lack of endospore production, typically characteristic of the genus, alongside its isolation from the unique Indonesian peatland ecosystem, suggests potential microbial adaptations to environmental pressures. <b>Conclusion:</b> These findings highlight the potential of peat soil bacteria as a valuable source of novel antibiotics, particularly against MDR pathogens like MRSA. The proposed new species, isolate 10 PS (cataloged as SUB14736623), expands taxonomic knowledge of <i>Lysinibacillus</i> and holds promise for developing natural antibiotic treatments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Pakistan Journal of Biological Sciences
Pakistan Journal of Biological Sciences Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
1.90
自引率
0.00%
发文量
102
期刊介绍: Pakistan Journal of Biological Sciences (PJBS) is an international, peer-reviewed and well indexed scientific journal seeks to promote and disseminate the knowledge of biological sciences by publishing outstanding research in the field. Scope of the journal includes: Cell biology, developmental biology, structural biology, microbiology, entomology, toxicology, molecular biology & genetics, biochemistry, biotechnology, biodiversity, ecology, marine biology, plant biology and bioinformatics.
期刊最新文献
Evaluation of the Antibacterial Potential of Ethanolic Cannabis sativa L. (Hang Kra Rog Phu Phan ST1) Extracts Against Human Pathogenic Bacteria. Antibacterial and Anticancer Properties of Diketopiperazines from Streptomyces antimicrobicus BN122, an Endophyte in Oryza sativa var. glutinosa. Evaluation of Genetic Diversity of Black Soybean [Glycine max (L.) Merr] by Using RAPD and ISSR Markers. Isolation and Characterization of GPAT3 Gene from Jojoba Plant and its Inferior Early Diagnosis of Sex. Laccase Characterization from Ganoderma lucidum Grown in Pineapple and Coffee Waste Substrates under Solid Fermentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1