Jing Li, Ya Yang, Xun-Wei Xu, Jing Lu, Hui Jing, Lan Zhou
{"title":"Nonreciprocal single-photon band structure in a coupled-spinning-resonator chain.","authors":"Jing Li, Ya Yang, Xun-Wei Xu, Jing Lu, Hui Jing, Lan Zhou","doi":"10.1364/OE.550347","DOIUrl":null,"url":null,"abstract":"<p><p>We analyze the single-photon band structure and the transport of a single photon in a one-dimensional coupled-spinning-resonator chain. The time-reversal symmetry of the resonators chain is broken by the spinning of the resonators, instead of external or synthetic magnetic field. Two nonreciprocal single-photon band gaps can be obtained in the coupled-spinning-resonator chain, whose width depends on the angular velocity of the spinning resonator. Based on the nonreciprocal band gaps, we can implement a single photon circulator at multiple frequency windows, and the direction of photon cycling is opposite for different band gaps. In addition, reciprocal single-photon band structures can also be realized in the coupled-spinning-resonator chain when all resonators rotate in the same direction with equal angular velocity. We believe our work opens a new route to achieve, manipulate, and switch nonreciprocal or reciprocal single-photon band structures, and provides new opportunities to realize novel single-photon devices.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"33 2","pages":"2487-2498"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.550347","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We analyze the single-photon band structure and the transport of a single photon in a one-dimensional coupled-spinning-resonator chain. The time-reversal symmetry of the resonators chain is broken by the spinning of the resonators, instead of external or synthetic magnetic field. Two nonreciprocal single-photon band gaps can be obtained in the coupled-spinning-resonator chain, whose width depends on the angular velocity of the spinning resonator. Based on the nonreciprocal band gaps, we can implement a single photon circulator at multiple frequency windows, and the direction of photon cycling is opposite for different band gaps. In addition, reciprocal single-photon band structures can also be realized in the coupled-spinning-resonator chain when all resonators rotate in the same direction with equal angular velocity. We believe our work opens a new route to achieve, manipulate, and switch nonreciprocal or reciprocal single-photon band structures, and provides new opportunities to realize novel single-photon devices.
期刊介绍:
Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.