Mateusz Radwanski, Ewa Zmyslowska-Polakowska, Karolina Osica, Michal Krasowski, Salvatore Sauro, Louis Hardan, Monika Lukomska-Szymanska
{"title":"Mechanical properties of modern restorative \"bioactive\" dental materials - an in vitro study.","authors":"Mateusz Radwanski, Ewa Zmyslowska-Polakowska, Karolina Osica, Michal Krasowski, Salvatore Sauro, Louis Hardan, Monika Lukomska-Szymanska","doi":"10.1038/s41598-025-86595-7","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed at assessing the mechanical properties and degradation of commercial bioactive materials. The bioactive materials (Activa Bioactive Restorative, Beautifil Flow Plus F00, F03, Predicta Bulk Bioactive) and composite resin Filtek Supreme Flow were submitted to flexural and diametral tensile strength tests (FS, DTS), modulus of elasticity (ME) evaluation, and analysis of aging in 70% ethanol and saliva on their hardness and sorption. The results for DTS ranged from 33.16 MPa (Beautifil Flow Plus F03) to 47.74 MPa (Filtek Supreme Flow). The highest FS was 120.40 MPa (Predicta Bulk Bioactive), while the lowest values were 86.55 MPa (Activa Bioactive Restorative). Activa Bioactive Restorative showed the lowest ME, as well as the highest water sorption both in alcohol and artificial saliva. Moreover, aging in saliva induced a significant decrease in hardness for Activa Restorative (p < .01). Alcohol storage caused a significant decrease in hardness for all materials (p < .0001). All tested materials met the basic requirements for light-curing materials in terms of DTS and FS. However, all materials showed higher sorption in alcohol than in saliva, while hardness decreased significantly after 30 days. Predicta Bulk Bioactive presented the highest mechanical parameters, initial hardness, and the lowest sorption of alcohol and saliva.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"3552"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-86595-7","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed at assessing the mechanical properties and degradation of commercial bioactive materials. The bioactive materials (Activa Bioactive Restorative, Beautifil Flow Plus F00, F03, Predicta Bulk Bioactive) and composite resin Filtek Supreme Flow were submitted to flexural and diametral tensile strength tests (FS, DTS), modulus of elasticity (ME) evaluation, and analysis of aging in 70% ethanol and saliva on their hardness and sorption. The results for DTS ranged from 33.16 MPa (Beautifil Flow Plus F03) to 47.74 MPa (Filtek Supreme Flow). The highest FS was 120.40 MPa (Predicta Bulk Bioactive), while the lowest values were 86.55 MPa (Activa Bioactive Restorative). Activa Bioactive Restorative showed the lowest ME, as well as the highest water sorption both in alcohol and artificial saliva. Moreover, aging in saliva induced a significant decrease in hardness for Activa Restorative (p < .01). Alcohol storage caused a significant decrease in hardness for all materials (p < .0001). All tested materials met the basic requirements for light-curing materials in terms of DTS and FS. However, all materials showed higher sorption in alcohol than in saliva, while hardness decreased significantly after 30 days. Predicta Bulk Bioactive presented the highest mechanical parameters, initial hardness, and the lowest sorption of alcohol and saliva.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.