Molecular Interactions of the Antimicrobial Peptide Tritrpticin with Mixed Nanoaggregates: A Fluorescence Spectroscopy Study.

IF 1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Protein and Peptide Letters Pub Date : 2025-01-28 DOI:10.2174/0109298665359223241226091327
Kaio César Antunes Rocha, Maria Carolina Oliveira de Arruda Brasil, Eduardo Maffud Cilli, Luiz Carlos Salay
{"title":"Molecular Interactions of the Antimicrobial Peptide Tritrpticin with Mixed Nanoaggregates: A Fluorescence Spectroscopy Study.","authors":"Kaio César Antunes Rocha, Maria Carolina Oliveira de Arruda Brasil, Eduardo Maffud Cilli, Luiz Carlos Salay","doi":"10.2174/0109298665359223241226091327","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Tritrpticin (TRP3) is a peptide belonging to the cathelicidin family and has a broad spectrum of antimicrobial activity. However, this class of biomolecules can be easily degraded in the body, making it necessary to use an efficient transport system. The ability to form stable nanostructures from the interaction of glycyrrhizin saponin with the pluronic polymer F127 was demonstrated, forming mixed biopolymeric micelles, highly promising as drug carriers.</p><p><strong>Objective: </strong>The present work sought to understand the physicochemical interaction of the antimicrobial peptide TRP3 with the mixed polymeric micelle made from pluronic F127 and the saponin glycyrrhizin.</p><p><strong>Methods: </strong>The interaction of tritrpticin with mixed nanostructured micelles was evaluated through fluorescence spectroscopy and fluorescence quenching with acrylamide. The experiments were performed at room temperature (25 ± 1°C), adopting an excitation wavelength set to 280 nm and emission between 300 and 500 nm, with a slit of 5 nm.</p><p><strong>Results: </strong>The interaction of the cationic peptide tritrpticin with the mixed biopolymeric micelles was observed through the blue shift of the fluorescence emission to shorter wavelengths, proving the change of tryptophan to a more hydrophobic environment. Through the fluorescence suppression technique, it was possible to indicate the location of the peptide in the mixed micelles, proving tritrpticin to be partially inserted inside them.</p><p><strong>Conclusion: </strong>It was concluded that tritrpticin interacted with mixed nanostructured micelles, forming a promising system for biotechnological applications.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein and Peptide Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0109298665359223241226091327","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Tritrpticin (TRP3) is a peptide belonging to the cathelicidin family and has a broad spectrum of antimicrobial activity. However, this class of biomolecules can be easily degraded in the body, making it necessary to use an efficient transport system. The ability to form stable nanostructures from the interaction of glycyrrhizin saponin with the pluronic polymer F127 was demonstrated, forming mixed biopolymeric micelles, highly promising as drug carriers.

Objective: The present work sought to understand the physicochemical interaction of the antimicrobial peptide TRP3 with the mixed polymeric micelle made from pluronic F127 and the saponin glycyrrhizin.

Methods: The interaction of tritrpticin with mixed nanostructured micelles was evaluated through fluorescence spectroscopy and fluorescence quenching with acrylamide. The experiments were performed at room temperature (25 ± 1°C), adopting an excitation wavelength set to 280 nm and emission between 300 and 500 nm, with a slit of 5 nm.

Results: The interaction of the cationic peptide tritrpticin with the mixed biopolymeric micelles was observed through the blue shift of the fluorescence emission to shorter wavelengths, proving the change of tryptophan to a more hydrophobic environment. Through the fluorescence suppression technique, it was possible to indicate the location of the peptide in the mixed micelles, proving tritrpticin to be partially inserted inside them.

Conclusion: It was concluded that tritrpticin interacted with mixed nanostructured micelles, forming a promising system for biotechnological applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Protein and Peptide Letters
Protein and Peptide Letters 生物-生化与分子生物学
CiteScore
2.90
自引率
0.00%
发文量
98
审稿时长
2 months
期刊介绍: Protein & Peptide Letters publishes letters, original research papers, mini-reviews and guest edited issues in all important aspects of protein and peptide research, including structural studies, advances in recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, and drug design. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallization and preliminary structure determination of biologically important proteins are considered only if they include significant new approaches or deal with proteins of immediate importance, and preliminary structure determinations of biologically important proteins. Purely theoretical/review papers should provide new insight into the principles of protein/peptide structure and function. Manuscripts describing computational work should include some experimental data to provide confirmation of the results of calculations. Protein & Peptide Letters focuses on: Structure Studies Advances in Recombinant Expression Drug Design Chemical Synthesis Function Pharmacology Enzymology Conformational Analysis Immunology Biotechnology Protein Engineering Protein Folding Sequencing Molecular Recognition Purification and Analysis
期刊最新文献
Molecular Interactions of the Antimicrobial Peptide Tritrpticin with Mixed Nanoaggregates: A Fluorescence Spectroscopy Study. ZNF165: A Pan-Cancer Biomarker with Prognostic and Therapeutic Potential. MARVELD1 Promotes the Invasiveness in Pancreatic Adenocarcinoma through the Activation of Epithelial-to-Mesenchymal Transition. Amphibian-Derived Antimicrobial Peptides: Essential Components of Innate Immunity and Potential Leads for New Antibiotic Development. ZP3 Expression in Pancreatic Adenocarcinoma: Its Implications for the Prognosis and Therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1