Carolina Almirón, Tomás Denis Petitti, María Agustina Ponso, Ana María Romero, Vanessa Andrea Areco, María Isabel Bianco, Martín Espariz, Pablo Marcelo Yaryura
{"title":"Functional and genomic analyses of plant growth promoting traits in Priestia aryabhattai and Paenibacillus sp. isolates from tomato rhizosphere.","authors":"Carolina Almirón, Tomás Denis Petitti, María Agustina Ponso, Ana María Romero, Vanessa Andrea Areco, María Isabel Bianco, Martín Espariz, Pablo Marcelo Yaryura","doi":"10.1038/s41598-025-87390-0","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated plant growth-promoting (PGP) mechanisms in Priestia aryabhattai VMYP6 and Paenibacillus sp. VMY10, isolated from tomato roots. Their genomes were initially assessed in silico through various approaches, and these observations were then compared with results obtained in vitro and in vivo. Both possess genes associated with the production of siderophores, indole acetic acid (IAA) and cytokinins (CKs), all of which have been shown to promote plant growth. The two strains were able to produce these compounds in vitro. Although both genomes harbor genes for phosphorus solubilization, only VMY10 demonstrated this ability in vitro. Genes linked to flagellar assembly and chemotaxis were identified in the two cases. Both strains were able to colonize plant roots, even though VMYP6 lacked motility and no flagella were observed microscopically. In the greenhouse, tomato plants inoculated with the strains showed increased biomass, leaf area, and root length. These findings underscore the importance of integrating in vitro assays, genomic analyses, and plant trials to gain a comprehensive insight into the PGP mechanisms of rhizobacteria like VMYP6 and VMY10. Such insight may contribute to improving the selection of strains used as biofertilizers in tomato, a major crop worldwide.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"3498"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-87390-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated plant growth-promoting (PGP) mechanisms in Priestia aryabhattai VMYP6 and Paenibacillus sp. VMY10, isolated from tomato roots. Their genomes were initially assessed in silico through various approaches, and these observations were then compared with results obtained in vitro and in vivo. Both possess genes associated with the production of siderophores, indole acetic acid (IAA) and cytokinins (CKs), all of which have been shown to promote plant growth. The two strains were able to produce these compounds in vitro. Although both genomes harbor genes for phosphorus solubilization, only VMY10 demonstrated this ability in vitro. Genes linked to flagellar assembly and chemotaxis were identified in the two cases. Both strains were able to colonize plant roots, even though VMYP6 lacked motility and no flagella were observed microscopically. In the greenhouse, tomato plants inoculated with the strains showed increased biomass, leaf area, and root length. These findings underscore the importance of integrating in vitro assays, genomic analyses, and plant trials to gain a comprehensive insight into the PGP mechanisms of rhizobacteria like VMYP6 and VMY10. Such insight may contribute to improving the selection of strains used as biofertilizers in tomato, a major crop worldwide.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.