Increasing robustness of in vitro assay for immnosuppressive effect of mesenchymal stromal/stem cells: The role of inflammatory cytokine production by peripheral blood mononuclear cells

IF 3.4 3区 环境科学与生态学 Q3 CELL & TISSUE ENGINEERING Regenerative Therapy Pub Date : 2025-01-09 DOI:10.1016/j.reth.2024.12.016
Rumi Sawada , Shinji Kusakawa , Mika Kusuhara , Kazusa Tanaka , Takumi Miura , Satoshi Yasuda , Yoji Sato
{"title":"Increasing robustness of in vitro assay for immnosuppressive effect of mesenchymal stromal/stem cells: The role of inflammatory cytokine production by peripheral blood mononuclear cells","authors":"Rumi Sawada ,&nbsp;Shinji Kusakawa ,&nbsp;Mika Kusuhara ,&nbsp;Kazusa Tanaka ,&nbsp;Takumi Miura ,&nbsp;Satoshi Yasuda ,&nbsp;Yoji Sato","doi":"10.1016/j.reth.2024.12.016","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>The Quality by Design (QbD) approach for developing cell therapy products using mesenchymal stromal/stem cells (MSCs) is a promising method for designing manufacturing processes to improve the quality of MSC products. It is crucial to ensure the reproducibility and robustness of the test system for evaluating critical quality attributes (CQAs) in the QbD approach for manufacturing of pharmaceutical products. In this study, we explored the key factors involved in establishing a robust evaluation system for the immunosuppressive effect of MSCs, which can be an example of a CQA in developing and manufacturing therapeutic MSCs for treating graft-versus-host disease, <em>etc</em>, and we have identified method attributes to increase the robustness of a simple <em>in vitro</em> assay to assess the immunosuppressive effects of MSCs.</div></div><div><h3>Methods</h3><div>We evaluated the performance of an assay system to examine the proliferation of peripheral blood mononuclear cells (PBMCs) activated with the mitogen phytohemagglutinin (PHA) when co-cultured with MSCs, the so-called one-way mixed lymphocyte reaction (MLR) assay. The MLR assay was performed on the same MSCs using 10 PBMC lots from different donors. In addition, 13 cytokine production levels in PHA-stimulated PBMCs were assessed.</div></div><div><h3>Results</h3><div>The PHA-stimulated proliferation response of PBMCs, the action of MSCs in the MLR test, and the cytokine release of the respective PBMCs significantly differed among the PBMC lots (p &lt; 0.05). A correlation analysis between the amounts of cytokines released by PBMCs and the immunosuppressive potency of MSCs showed that IFNγ, TNFα, CXCL10, PD-L1, HGF, and CCL5 production in PBMCs was significantly correlated with the MSC-mediated inhibition of PBMC proliferation (p &lt; 0.05). Therefore, we selected two PBMC lots with high PBMC proliferation and PHA-stimulated cytokine (such as IFNγ and TNFα) release for the subsequent one-way MLR assay. The robustness of the established test system was confirmed by repeating the assay several times on different days for the same MSCs (coefficient of variation &lt;0.2).</div></div><div><h3>Conclusions</h3><div>To make robust the MSC immunosuppressive potency assay system, controlling the quality of PBMCs used for the assay is essential. Evaluating the inflammatory cytokine production capacity of PBMCs is effective in assessing the quality of the MLR assay system.</div></div>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"28 ","pages":"Pages 321-332"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773150/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Therapy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352320424002360","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

The Quality by Design (QbD) approach for developing cell therapy products using mesenchymal stromal/stem cells (MSCs) is a promising method for designing manufacturing processes to improve the quality of MSC products. It is crucial to ensure the reproducibility and robustness of the test system for evaluating critical quality attributes (CQAs) in the QbD approach for manufacturing of pharmaceutical products. In this study, we explored the key factors involved in establishing a robust evaluation system for the immunosuppressive effect of MSCs, which can be an example of a CQA in developing and manufacturing therapeutic MSCs for treating graft-versus-host disease, etc, and we have identified method attributes to increase the robustness of a simple in vitro assay to assess the immunosuppressive effects of MSCs.

Methods

We evaluated the performance of an assay system to examine the proliferation of peripheral blood mononuclear cells (PBMCs) activated with the mitogen phytohemagglutinin (PHA) when co-cultured with MSCs, the so-called one-way mixed lymphocyte reaction (MLR) assay. The MLR assay was performed on the same MSCs using 10 PBMC lots from different donors. In addition, 13 cytokine production levels in PHA-stimulated PBMCs were assessed.

Results

The PHA-stimulated proliferation response of PBMCs, the action of MSCs in the MLR test, and the cytokine release of the respective PBMCs significantly differed among the PBMC lots (p < 0.05). A correlation analysis between the amounts of cytokines released by PBMCs and the immunosuppressive potency of MSCs showed that IFNγ, TNFα, CXCL10, PD-L1, HGF, and CCL5 production in PBMCs was significantly correlated with the MSC-mediated inhibition of PBMC proliferation (p < 0.05). Therefore, we selected two PBMC lots with high PBMC proliferation and PHA-stimulated cytokine (such as IFNγ and TNFα) release for the subsequent one-way MLR assay. The robustness of the established test system was confirmed by repeating the assay several times on different days for the same MSCs (coefficient of variation <0.2).

Conclusions

To make robust the MSC immunosuppressive potency assay system, controlling the quality of PBMCs used for the assay is essential. Evaluating the inflammatory cytokine production capacity of PBMCs is effective in assessing the quality of the MLR assay system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Regenerative Therapy
Regenerative Therapy Engineering-Biomedical Engineering
CiteScore
6.00
自引率
2.30%
发文量
106
审稿时长
49 days
期刊介绍: Regenerative Therapy is the official peer-reviewed online journal of the Japanese Society for Regenerative Medicine. Regenerative Therapy is a multidisciplinary journal that publishes original articles and reviews of basic research, clinical translation, industrial development, and regulatory issues focusing on stem cell biology, tissue engineering, and regenerative medicine.
期刊最新文献
Human placental extract improves liver cirrhosis in mice with regulation of macrophages and senescent cells Therapeutic potential of exosomes derived from human endometrial mesenchymal stem cells for heart tissue regeneration after myocardial infarction Effects of basic fibroblast growth factor on cartilage to bone: Time-course histological analysis of in vivo cartilage formation from polydactyly-derived chondrocytes PDZRN3 regulates adipogenesis of mesenchymal progenitors in muscle Cell culture expansion media choice affects secretory, protective and immuno-modulatory features of adipose mesenchymal stromal cell-derived secretomes for orthopaedic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1