Xuefu Zhuyu Decoction improves hyperlipidemia through the MAPK/NF-κB and MAPK/PPARα/CPT-1A signaling pathway

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY The FASEB Journal Pub Date : 2025-01-29 DOI:10.1096/fj.202402688R
Jiajun Han, Yuyang Miao, Linze Song, Xianfeng Zhou, Yan Liu, Lin Wang, Kai Zhu, He Ma, Yan Ma, Qingjie Li, Dong Han
{"title":"Xuefu Zhuyu Decoction improves hyperlipidemia through the MAPK/NF-κB and MAPK/PPARα/CPT-1A signaling pathway","authors":"Jiajun Han,&nbsp;Yuyang Miao,&nbsp;Linze Song,&nbsp;Xianfeng Zhou,&nbsp;Yan Liu,&nbsp;Lin Wang,&nbsp;Kai Zhu,&nbsp;He Ma,&nbsp;Yan Ma,&nbsp;Qingjie Li,&nbsp;Dong Han","doi":"10.1096/fj.202402688R","DOIUrl":null,"url":null,"abstract":"<p>Xuefu Zhuyu Decoction (XZD) is widely used in the treatment of cardiovascular diseases. The purpose of this study was to explore the pharmacological effects and molecular mechanisms of XZD in improving hyperlipidemia and to provide a theoretical framework for clinical application. In this study, the signaling pathways regulated by XZD in improving hyperlipidemia were predicted by network pharmacology. Molecular docking was used to verify the affinity between the components in XZD and the target. Furthermore, a hyperlipidemic model in rats was constructed through feeding a high-fat diet. The effect of XZD on hyperlipidemia was verified by histopathological staining, Elisa, and western blot. The results found that the XZD improved dyslipidemia and inflammatory factor disorders, and inhibited liver function damage, pathological damage, and oxidative stress damage in hyperlipidemic rats. The findings from molecular docking and network pharmacology suggested that the mechanism of XZD improving hyperlipidemia may be closely related to the MAPK, NF-κB, and PPAR pathways. This study demonstrated that the XZD inhibited liver lipid metabolism disorder and inflammatory response by regulating the MAPK/NF-κB and MAPK/PPARα/CPT-1A pathway, significantly improved liver histopathological damage and oxidative stress injury, and played a protective role in hyperlipidemic rats.</p>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"39 2","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fj.202402688R","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Xuefu Zhuyu Decoction (XZD) is widely used in the treatment of cardiovascular diseases. The purpose of this study was to explore the pharmacological effects and molecular mechanisms of XZD in improving hyperlipidemia and to provide a theoretical framework for clinical application. In this study, the signaling pathways regulated by XZD in improving hyperlipidemia were predicted by network pharmacology. Molecular docking was used to verify the affinity between the components in XZD and the target. Furthermore, a hyperlipidemic model in rats was constructed through feeding a high-fat diet. The effect of XZD on hyperlipidemia was verified by histopathological staining, Elisa, and western blot. The results found that the XZD improved dyslipidemia and inflammatory factor disorders, and inhibited liver function damage, pathological damage, and oxidative stress damage in hyperlipidemic rats. The findings from molecular docking and network pharmacology suggested that the mechanism of XZD improving hyperlipidemia may be closely related to the MAPK, NF-κB, and PPAR pathways. This study demonstrated that the XZD inhibited liver lipid metabolism disorder and inflammatory response by regulating the MAPK/NF-κB and MAPK/PPARα/CPT-1A pathway, significantly improved liver histopathological damage and oxidative stress injury, and played a protective role in hyperlipidemic rats.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The FASEB Journal
The FASEB Journal 生物-生化与分子生物学
CiteScore
9.20
自引率
2.10%
发文量
6243
审稿时长
3 months
期刊介绍: The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.
期刊最新文献
Whole-body vibration protects against chronic high-altitude hypoxic bone loss by regulating the nitric oxide/HIF-1α axis in osteoblasts Novel role of the SOX4/CSNK2A1 axis in regulating TOP2A phosphorylation in breast cancer progression Dysregulated fatty acid metabolism in pericardiac adipose tissue of pulmonary hypertension due to left heart disease mice Cover Image Profiles of gut microbiota and metabolites for high risk of transgenerational depression-like behavior by paternal methamphetamine exposure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1