Biotin mitigates the development of manganese-induced, Parkinson’s disease–related neurotoxicity in Drosophila and human neurons

IF 6.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Science Signaling Pub Date : 2025-01-21 DOI:10.1126/scisignal.adn9868
Yunjia Lai, Pablo Reina-Gonzalez, Gali Maor, Gary W. Miller, Souvarish Sarkar
{"title":"Biotin mitigates the development of manganese-induced, Parkinson’s disease–related neurotoxicity in Drosophila and human neurons","authors":"Yunjia Lai,&nbsp;Pablo Reina-Gonzalez,&nbsp;Gali Maor,&nbsp;Gary W. Miller,&nbsp;Souvarish Sarkar","doi":"10.1126/scisignal.adn9868","DOIUrl":null,"url":null,"abstract":"<div >Chronic exposure to manganese (Mn) induces manganism and has been widely implicated as a contributing environmental factor to Parkinson’s disease (PD), featuring notable overlaps between the two in motor symptoms and clinical hallmarks. Here, we developed an adult <i>Drosophila</i> model of Mn toxicity that recapitulated key parkinsonian features, spanning behavioral deficits, neuronal loss, and dysfunctions in lysosomes and mitochondria. Metabolomics analysis of the brain and body tissues of these flies at an early stage of toxicity identified systemic changes in the metabolism of biotin (also known as vitamin B<sub>7</sub>) in Mn-treated groups. Biotinidase-deficient flies showed exacerbated Mn-induced neurotoxicity, parkinsonism, and mitochondrial dysfunction. Supplementing the diet of wild-type flies with biotin ameliorated the pathological phenotypes of concurrent exposure to Mn. Biotin supplementation also ameliorated the pathological phenotypes of three standard fly models of PD. Furthermore, supplementing the culture media of human induced stem cells (iPSCs) differentiated midbrain dopaminergic neurons with biotin protected against Mn-induced mitochondrial dysregulation, cytotoxicity, and neuronal loss. Last, analysis of the expression of genes encoding biotin-related proteins in patients with PD revealed increased amounts of biotin transporters in the substantia nigra compared with healthy controls, suggesting a potential role of altered biotin metabolism in PD. Together, our findings identified changes in biotin metabolism as underlying Mn neurotoxicity and parkinsonian pathology in flies, for which dietary biotin supplementation was preventative.</div>","PeriodicalId":21658,"journal":{"name":"Science Signaling","volume":"18 870","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Signaling","FirstCategoryId":"99","ListUrlMain":"https://www.science.org/doi/10.1126/scisignal.adn9868","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic exposure to manganese (Mn) induces manganism and has been widely implicated as a contributing environmental factor to Parkinson’s disease (PD), featuring notable overlaps between the two in motor symptoms and clinical hallmarks. Here, we developed an adult Drosophila model of Mn toxicity that recapitulated key parkinsonian features, spanning behavioral deficits, neuronal loss, and dysfunctions in lysosomes and mitochondria. Metabolomics analysis of the brain and body tissues of these flies at an early stage of toxicity identified systemic changes in the metabolism of biotin (also known as vitamin B7) in Mn-treated groups. Biotinidase-deficient flies showed exacerbated Mn-induced neurotoxicity, parkinsonism, and mitochondrial dysfunction. Supplementing the diet of wild-type flies with biotin ameliorated the pathological phenotypes of concurrent exposure to Mn. Biotin supplementation also ameliorated the pathological phenotypes of three standard fly models of PD. Furthermore, supplementing the culture media of human induced stem cells (iPSCs) differentiated midbrain dopaminergic neurons with biotin protected against Mn-induced mitochondrial dysregulation, cytotoxicity, and neuronal loss. Last, analysis of the expression of genes encoding biotin-related proteins in patients with PD revealed increased amounts of biotin transporters in the substantia nigra compared with healthy controls, suggesting a potential role of altered biotin metabolism in PD. Together, our findings identified changes in biotin metabolism as underlying Mn neurotoxicity and parkinsonian pathology in flies, for which dietary biotin supplementation was preventative.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science Signaling
Science Signaling BIOCHEMISTRY & MOLECULAR BIOLOGY-CELL BIOLOGY
CiteScore
9.50
自引率
0.00%
发文量
148
审稿时长
3-8 weeks
期刊介绍: "Science Signaling" is a reputable, peer-reviewed journal dedicated to the exploration of cell communication mechanisms, offering a comprehensive view of the intricate processes that govern cellular regulation. This journal, published weekly online by the American Association for the Advancement of Science (AAAS), is a go-to resource for the latest research in cell signaling and its various facets. The journal's scope encompasses a broad range of topics, including the study of signaling networks, synthetic biology, systems biology, and the application of these findings in drug discovery. It also delves into the computational and modeling aspects of regulatory pathways, providing insights into how cells communicate and respond to their environment. In addition to publishing full-length articles that report on groundbreaking research, "Science Signaling" also features reviews that synthesize current knowledge in the field, focus articles that highlight specific areas of interest, and editor-written highlights that draw attention to particularly significant studies. This mix of content ensures that the journal serves as a valuable resource for both researchers and professionals looking to stay abreast of the latest advancements in cell communication science.
期刊最新文献
Glutamatergic argonaute2 promotes the formation of the neurovascular unit in mice A sequencing-based screening method identifies regulators of EGFR signaling from nonviable mutants in Caenorhabditis elegans Dulling the sweet tooth Stem cell health from mom’s gut Sustained Gαs signaling mediated by vasopressin type 2 receptors is ligand dependent but endocytosis and β-arrestin independent
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1