Chlorine-substituted transformation products generated during chlorination of the organophosphorus insecticide disulfoton induce anti-acetylcholine esterase activity.

Chemosphere Pub Date : 2025-03-01 Epub Date: 2025-01-27 DOI:10.1016/j.chemosphere.2025.144125
Taku Matsushita, Daisuke Ando, Nobutaka Shirasaki, Trang My Chu, Karen Ozaki, Yoshihiko Matsui
{"title":"Chlorine-substituted transformation products generated during chlorination of the organophosphorus insecticide disulfoton induce anti-acetylcholine esterase activity.","authors":"Taku Matsushita, Daisuke Ando, Nobutaka Shirasaki, Trang My Chu, Karen Ozaki, Yoshihiko Matsui","doi":"10.1016/j.chemosphere.2025.144125","DOIUrl":null,"url":null,"abstract":"<p><p>Global concern regarding transformation products (TPs) derived from contaminants, including pesticides, in the environment and during water treatment has been growing markedly. In the present study, we investigated the anti-acetylcholinesterase (AChE) activity of an aqueous solution of the organophosphorus insecticide disulfoton, a toxicological endpoint for determining the acceptable daily intake of disulfoton, both in the presence and the absence of metabolism during chlorination. Disulfoton rapidly reacted with free chlorine and completely disappeared within 0.25 h. Although the aqueous disulfoton solution did not induce anti-AChE activity before chlorination, the chlorinated samples did induce anti-AChE activity, both with (indirect toxicity) and without (direct toxicity) metabolism. These observations clearly indicated that disulfoton was converted into toxic TPs through reactions with free chlorine. Liquid chromatographic fractionation followed by an anti-AChE activity assay revealed that three TPs were responsible for the observed direct toxicity. Further mass spectrometric analyses showed that these TPs were disulfoton-oxon-sulfone, and mono- and dichloro-substituted derivatives of disulfoton-oxon-sulfoxide (O-(1-chloroethyl) S-[2-(ethanesulfinyl)ethyl] O-ethyl phosphorothioate and O-(1,2-dichloroethyl) S-[2-(ethanesulfinyl)ethyl] O-ethyl phosphorothioate, respectively), none of which were simply oxon. Results of the anti-AChE activity assay on the chemical standard of disulfoton-oxon-sulfone after metabolism and quantification of the disulfoton-oxon-sulfone in the chlorinated samples revealed that the observed indirect toxicity was solely induced by this TP. It is recommend that drinking water treatment plants that use free chlorine as a disinfectant monitor the concentrations of at least disulfoton-oxon-sulfone, which is commercially available, in finished water in addition to disulfoton itself, to ensure the safety of tap water.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":"372 ","pages":"144125"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chemosphere.2025.144125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Global concern regarding transformation products (TPs) derived from contaminants, including pesticides, in the environment and during water treatment has been growing markedly. In the present study, we investigated the anti-acetylcholinesterase (AChE) activity of an aqueous solution of the organophosphorus insecticide disulfoton, a toxicological endpoint for determining the acceptable daily intake of disulfoton, both in the presence and the absence of metabolism during chlorination. Disulfoton rapidly reacted with free chlorine and completely disappeared within 0.25 h. Although the aqueous disulfoton solution did not induce anti-AChE activity before chlorination, the chlorinated samples did induce anti-AChE activity, both with (indirect toxicity) and without (direct toxicity) metabolism. These observations clearly indicated that disulfoton was converted into toxic TPs through reactions with free chlorine. Liquid chromatographic fractionation followed by an anti-AChE activity assay revealed that three TPs were responsible for the observed direct toxicity. Further mass spectrometric analyses showed that these TPs were disulfoton-oxon-sulfone, and mono- and dichloro-substituted derivatives of disulfoton-oxon-sulfoxide (O-(1-chloroethyl) S-[2-(ethanesulfinyl)ethyl] O-ethyl phosphorothioate and O-(1,2-dichloroethyl) S-[2-(ethanesulfinyl)ethyl] O-ethyl phosphorothioate, respectively), none of which were simply oxon. Results of the anti-AChE activity assay on the chemical standard of disulfoton-oxon-sulfone after metabolism and quantification of the disulfoton-oxon-sulfone in the chlorinated samples revealed that the observed indirect toxicity was solely induced by this TP. It is recommend that drinking water treatment plants that use free chlorine as a disinfectant monitor the concentrations of at least disulfoton-oxon-sulfone, which is commercially available, in finished water in addition to disulfoton itself, to ensure the safety of tap water.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corrigendum to "Degradation of aqueous methylparaben by non-thermal plasma combined with ZnFe2O4-rGO nanocomposites: Performance, multi-catalytic mechanism, influencing factors and degradation pathways" [Chemosphere 271 (2021) 129575]. A high-efficient electrochemical degradation of diclofenac in water on planar and microstructured 2D, and macroporous 3D boron-doped diamond electrodes: Identification of degradation and transformation products. Fluorescence spectroscopy as an indicator tool for pharmaceutical contamination in groundwater and surface water. The first harmonised total diet study in Portugal: Arsenic, cadmium and lead exposure assessment. Comprehensive air quality assessment including non-targeted approaches in primary schools from Spain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1