{"title":"Mechanistic understanding of pH as a driving force in cancer therapeutics.","authors":"Vivek Pandey, Tejasvi Pandey","doi":"10.1039/d4tb02083a","DOIUrl":null,"url":null,"abstract":"<p><p>The development of pH-directed nanoparticles for tumor targeting represents a significant advancement in cancer biology and therapeutic strategies. These innovative materials have the ability to interact with the unique acidic microenvironment of tumors. They enhance drug delivery, increase therapeutic efficacy, and reduce systemic toxicity. The acidic conditions within tumors trigger the release of drugs from pH-responsive nanoparticles, ensuring targeted and controlled delivery directly to cancer cells while minimizing damage to healthy tissues. This review comprehensively explores the design, synthesis, and application of pH-stabilized nanoparticles in cancer therapy. It delves into the mechanisms of pH-responsive behavior, such as the use of pH-sensitive polymers and cleavable linkages that respond to the acidic tumor environment. Current strategies for nanoparticle stabilization, including surface coating, core-shell nanostructures, and hybrid nanoparticles, are discussed in detail, highlighting how these approaches enhance the stability and functionality of the nanoparticles in biological systems. Recent advancements in nanoparticle-based drug delivery systems are examined, showcasing multi-functional nanoparticles that combine therapeutic and diagnostic functions, as well as those designed for combination therapy to overcome drug resistance. This review identifies future directions in the field, such as the need for improved stability and biocompatibility, controlled and predictable drug release, and overcoming regulatory and manufacturing hurdles. Herein, we have highlighted the transformative potential of pH-stabilized nanoparticles in cancer therapy, offering a pathway towards more effective and targeted cancer treatments.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4tb02083a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The development of pH-directed nanoparticles for tumor targeting represents a significant advancement in cancer biology and therapeutic strategies. These innovative materials have the ability to interact with the unique acidic microenvironment of tumors. They enhance drug delivery, increase therapeutic efficacy, and reduce systemic toxicity. The acidic conditions within tumors trigger the release of drugs from pH-responsive nanoparticles, ensuring targeted and controlled delivery directly to cancer cells while minimizing damage to healthy tissues. This review comprehensively explores the design, synthesis, and application of pH-stabilized nanoparticles in cancer therapy. It delves into the mechanisms of pH-responsive behavior, such as the use of pH-sensitive polymers and cleavable linkages that respond to the acidic tumor environment. Current strategies for nanoparticle stabilization, including surface coating, core-shell nanostructures, and hybrid nanoparticles, are discussed in detail, highlighting how these approaches enhance the stability and functionality of the nanoparticles in biological systems. Recent advancements in nanoparticle-based drug delivery systems are examined, showcasing multi-functional nanoparticles that combine therapeutic and diagnostic functions, as well as those designed for combination therapy to overcome drug resistance. This review identifies future directions in the field, such as the need for improved stability and biocompatibility, controlled and predictable drug release, and overcoming regulatory and manufacturing hurdles. Herein, we have highlighted the transformative potential of pH-stabilized nanoparticles in cancer therapy, offering a pathway towards more effective and targeted cancer treatments.