Cysteine S-conjugate sulfoxide β-lyase activity for human ACCS.

Jinmin Gao, Yueqi Xu, Christopher Yeh, Yike Zou, Yang Hai
{"title":"Cysteine S-conjugate sulfoxide β-lyase activity for human ACCS.","authors":"Jinmin Gao, Yueqi Xu, Christopher Yeh, Yike Zou, Yang Hai","doi":"10.1111/febs.17419","DOIUrl":null,"url":null,"abstract":"<p><p>1-Aminocyclopropane-1-carboxylate synthase (ACCS) catalyzes the conversion of S-adenosyl-methionine to 1-aminocyclopropane-1-carboxylate (ACC), a rate-limiting step in ethylene biosynthesis. A gene encoding a putative ACCS protein was identified in the human genome two decades ago. It has been shown to not exhibit any canonical ACC synthase activity and its true function remains obscure. In this study, through a biochemical profiling approach, we demonstrate that human ACCS possesses cysteine conjugate sulfoxide β-lyase activity. This function is unexpected but reasonable, as it somewhat parallels the activity of ACCS proteins found in non-seed plants. Structure-function relationship study of human ACCS, guided by an AlphaFold2 model, allowed us to identify key active site residues that are important for its β-lyase activity. Our biochemical study of human ACCS also provided insights into the function of other mammalian ACCS homologs.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.17419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

1-Aminocyclopropane-1-carboxylate synthase (ACCS) catalyzes the conversion of S-adenosyl-methionine to 1-aminocyclopropane-1-carboxylate (ACC), a rate-limiting step in ethylene biosynthesis. A gene encoding a putative ACCS protein was identified in the human genome two decades ago. It has been shown to not exhibit any canonical ACC synthase activity and its true function remains obscure. In this study, through a biochemical profiling approach, we demonstrate that human ACCS possesses cysteine conjugate sulfoxide β-lyase activity. This function is unexpected but reasonable, as it somewhat parallels the activity of ACCS proteins found in non-seed plants. Structure-function relationship study of human ACCS, guided by an AlphaFold2 model, allowed us to identify key active site residues that are important for its β-lyase activity. Our biochemical study of human ACCS also provided insights into the function of other mammalian ACCS homologs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rational design of Chim3, a multifunctional peptide carrying a formyl peptide receptor 2 (FPR2) agonist module released by bacterial signal peptidase I (Spase I). A steric gate prevents mutagenic dATP incorporation opposite 8-oxo-deoxyguanosine in mitochondrial DNA polymerases. Caspase-1/11 controls Zika virus replication in astrocytes by inhibiting glycolytic metabolism. Derivatives of MOPS: promising scaffolds for SARS coronaviruses Macro domain-targeted inhibition. The deubiquitinase inhibitor WP1130 drives nuclear aggregation and reactivation of mutant p53 for selective cancer cell targeting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1