Identification and structural characterization of a novel acetyl xylan esterase from Aspergillus oryzae.

Chihaya Yamada, Tomoe Kato, Yoshihito Shiono, Takuya Koseki, Shinya Fushinobu
{"title":"Identification and structural characterization of a novel acetyl xylan esterase from Aspergillus oryzae.","authors":"Chihaya Yamada, Tomoe Kato, Yoshihito Shiono, Takuya Koseki, Shinya Fushinobu","doi":"10.1111/febs.17420","DOIUrl":null,"url":null,"abstract":"<p><p>Acetyl xylan esterase plays a crucial role in the degradation of xylan, the major plant hemicellulose, by liberating acetic acid from the backbone polysaccharides. Acetyl xylan esterase B from Aspergillus oryzae, designated AoAxeB, was biochemically and structurally investigated. The AoAxeB-encoding gene with a native signal peptide was successfully expressed in Pichia pastoris as an active extracellular protein. The purified recombinant protein had pH and temperature optima of 8.0 and 30 °C, respectively, and was stable up to 35 °C. The optimal substrate for hydrolysis by purified recombinant AoAxeB among a panel of α-naphthyl esters was α-naphthyl acetate. Recombinant AoAxeB catalyzed the release of acetic acid from wheat arabinoxylan. The release of acetic acid from wheat arabinoxylan increased synergistically with xylanase addition. No activity was detected for the methyl esters of ferulic, p-coumaric, caffeic, or sinapic acids. The crystal structures of AoAxeB in the apo and succinate complexes were determined at resolutions of 1.75 and 1.90 Å, respectively. Although AoAxeB has been classified in the Esterase_phb family in the ESTerases and alpha/beta-Hydrolase Enzymes and Relatives (ESTHER) database, its structural features partly resemble those of ferulic acid esterase in the FaeC family. Phylogenetic analysis also indicated that AoAxeB is located between the clades of the two families. Docking analysis provided a plausible binding mode for xylotriose substrates acetylated at the 2- or 3-hydroxy position. This study expands the current knowledge of the structures of acetyl xylan esterases and ferulic acid esterases that are required for complete plant biomass degradation.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.17420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Acetyl xylan esterase plays a crucial role in the degradation of xylan, the major plant hemicellulose, by liberating acetic acid from the backbone polysaccharides. Acetyl xylan esterase B from Aspergillus oryzae, designated AoAxeB, was biochemically and structurally investigated. The AoAxeB-encoding gene with a native signal peptide was successfully expressed in Pichia pastoris as an active extracellular protein. The purified recombinant protein had pH and temperature optima of 8.0 and 30 °C, respectively, and was stable up to 35 °C. The optimal substrate for hydrolysis by purified recombinant AoAxeB among a panel of α-naphthyl esters was α-naphthyl acetate. Recombinant AoAxeB catalyzed the release of acetic acid from wheat arabinoxylan. The release of acetic acid from wheat arabinoxylan increased synergistically with xylanase addition. No activity was detected for the methyl esters of ferulic, p-coumaric, caffeic, or sinapic acids. The crystal structures of AoAxeB in the apo and succinate complexes were determined at resolutions of 1.75 and 1.90 Å, respectively. Although AoAxeB has been classified in the Esterase_phb family in the ESTerases and alpha/beta-Hydrolase Enzymes and Relatives (ESTHER) database, its structural features partly resemble those of ferulic acid esterase in the FaeC family. Phylogenetic analysis also indicated that AoAxeB is located between the clades of the two families. Docking analysis provided a plausible binding mode for xylotriose substrates acetylated at the 2- or 3-hydroxy position. This study expands the current knowledge of the structures of acetyl xylan esterases and ferulic acid esterases that are required for complete plant biomass degradation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rational design of Chim3, a multifunctional peptide carrying a formyl peptide receptor 2 (FPR2) agonist module released by bacterial signal peptidase I (Spase I). A steric gate prevents mutagenic dATP incorporation opposite 8-oxo-deoxyguanosine in mitochondrial DNA polymerases. Caspase-1/11 controls Zika virus replication in astrocytes by inhibiting glycolytic metabolism. Derivatives of MOPS: promising scaffolds for SARS coronaviruses Macro domain-targeted inhibition. The deubiquitinase inhibitor WP1130 drives nuclear aggregation and reactivation of mutant p53 for selective cancer cell targeting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1