Reinforcing Bulk Heterojunction Morphology through Side Chain-Engineered Pyrrolopyrrole-1,3-dione Polymeric Donors for Nonfullerene Organic Solar Cells.

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2025-01-07 eCollection Date: 2025-01-27 DOI:10.1021/acsaem.4c02670
Danbi Kim, Vellaiappillai Tamilavan, Chieh-Szu Huang, Yang Lu, Eunhye Yang, Insoo Shin, Hyun-Seock Yang, Sung Heum Park, Samuel D Stranks, Bo Ram Lee
{"title":"Reinforcing Bulk Heterojunction Morphology through Side Chain-Engineered Pyrrolopyrrole-1,3-dione Polymeric Donors for Nonfullerene Organic Solar Cells.","authors":"Danbi Kim, Vellaiappillai Tamilavan, Chieh-Szu Huang, Yang Lu, Eunhye Yang, Insoo Shin, Hyun-Seock Yang, Sung Heum Park, Samuel D Stranks, Bo Ram Lee","doi":"10.1021/acsaem.4c02670","DOIUrl":null,"url":null,"abstract":"<p><p>Organic solar cells (OSCs) are attracting significant attention due to their low cost, lightweight, and flexible nature. The introduction of nonfullerene acceptors (NFAs) has propelled OSC development into a transformative era. However, the limited availability of wide band gap polymer donors for NFAs poses a critical challenge, hindering further advancements. This study examines the role of developed wide band gap halogenated pyrrolo[3,4-<i>c</i>]pyrrole-1,3(2H,5H)-dione (PPD)-based polymers, in combination with the Y6 nonfullerene acceptor, in bulk heterojunction (BHJ) OSCs. We first focus on the electronic and absorbance modifications brought about by halogen substitution in PPD-based polymers, revealing how these adjustments influence the HOMO/LUMO energy levels and, subsequently, photovoltaic performance. Despite the increased <i>V</i> <sub>oc</sub> of halogenated polymers due to the optimal band alignment, power conversion efficiencies (PCEs) were decreased due to suboptimal blend morphologies. We second implemented PPD as a solid additive to PM6:Y6, forming ternary OSCs and further improving the PCE. The study provides a nuanced understanding of the interplay between molecular design, device morphology, and OSC performance and opens insights for future research to achieve an optimal balance between band alignment and favorable blend morphology for high-efficiency OSCs.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 2","pages":"1220-1229"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775866/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsaem.4c02670","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/27 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Organic solar cells (OSCs) are attracting significant attention due to their low cost, lightweight, and flexible nature. The introduction of nonfullerene acceptors (NFAs) has propelled OSC development into a transformative era. However, the limited availability of wide band gap polymer donors for NFAs poses a critical challenge, hindering further advancements. This study examines the role of developed wide band gap halogenated pyrrolo[3,4-c]pyrrole-1,3(2H,5H)-dione (PPD)-based polymers, in combination with the Y6 nonfullerene acceptor, in bulk heterojunction (BHJ) OSCs. We first focus on the electronic and absorbance modifications brought about by halogen substitution in PPD-based polymers, revealing how these adjustments influence the HOMO/LUMO energy levels and, subsequently, photovoltaic performance. Despite the increased V oc of halogenated polymers due to the optimal band alignment, power conversion efficiencies (PCEs) were decreased due to suboptimal blend morphologies. We second implemented PPD as a solid additive to PM6:Y6, forming ternary OSCs and further improving the PCE. The study provides a nuanced understanding of the interplay between molecular design, device morphology, and OSC performance and opens insights for future research to achieve an optimal balance between band alignment and favorable blend morphology for high-efficiency OSCs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Issue Publication Information Issue Editorial Masthead High-Capacity F-Doped Na0.7MnO2.05 with Balanced Voltage Distribution for Decoupled Water Electrolysis Electrochemical Kinetic Properties and Stability of A-Site Cation-Deficient Perovskite Ba1–xCo0.6Fe0.2Zr0.1Y0.1O3−δ (x = 0, 0.05) as Cathode Materials for Low-Temperature SOFCs Facile Carburization Engineering to Construct Porous Locally Carbonized MoO3 Composite with Long-Term Stable Lithium Storage Capacity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1