{"title":"Thermosensitive Hydrogel Loaded with α-Mangostin for Enhanced Antitumor Effect of Doxorubicin.","authors":"Tianhui Liu, Qingshuang Wang, Wenxin Geng, Xue Jiang, Changshun Lu, Zhe Zhang, Xiangru Feng","doi":"10.1021/acsbiomaterials.4c02408","DOIUrl":null,"url":null,"abstract":"<p><p>The cancer-associated fibroblasts (CAFs) in tumor stroma present substantial barriers to drug penetration, resulting in tumor resistance and progression. One promising strategy is to reprogram CAFs into a quiescent state, which necessitates novel approaches. Our study introduces a sequential treatment strategy using chitosan thermosensitive hydrogels loaded with α-Mangostin (α-M), a small molecule drug with antifibrotic properties, aimed at reprogramming CAFs within the breast cancer tumor microenvironment (TME). We developed glutathione (GSH)-responsive nanoparticles (NPc) that carry the chemotherapeutic drug doxorubicin (DOX). Treatment with α-M results in the downregulation of CAF-specific biomarkers and a remodeled TME, which improves the penetration of NPc/DOX deep into the tumor tissue. This strategy holds great promise in enhancing cancer therapeutic outcomes in tumors rich in CAFs, particularly in the case of breast cancer.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c02408","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The cancer-associated fibroblasts (CAFs) in tumor stroma present substantial barriers to drug penetration, resulting in tumor resistance and progression. One promising strategy is to reprogram CAFs into a quiescent state, which necessitates novel approaches. Our study introduces a sequential treatment strategy using chitosan thermosensitive hydrogels loaded with α-Mangostin (α-M), a small molecule drug with antifibrotic properties, aimed at reprogramming CAFs within the breast cancer tumor microenvironment (TME). We developed glutathione (GSH)-responsive nanoparticles (NPc) that carry the chemotherapeutic drug doxorubicin (DOX). Treatment with α-M results in the downregulation of CAF-specific biomarkers and a remodeled TME, which improves the penetration of NPc/DOX deep into the tumor tissue. This strategy holds great promise in enhancing cancer therapeutic outcomes in tumors rich in CAFs, particularly in the case of breast cancer.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture