Chanju Na, Mingeun Kim, Gunhee Kim, Yuxi Lin, Young-Ho Lee, Wojciech Bal, Eunju Nam, Mi Hee Lim
{"title":"Distinct Aggregation Behavior of <i>N</i>-Terminally Truncated Aβ<sub>4-42</sub> Over Aβ<sub>1-42</sub> in the Presence of Zn(II).","authors":"Chanju Na, Mingeun Kim, Gunhee Kim, Yuxi Lin, Young-Ho Lee, Wojciech Bal, Eunju Nam, Mi Hee Lim","doi":"10.1021/acschemneuro.4c00831","DOIUrl":null,"url":null,"abstract":"<p><p>The deposition of amyloid-β (Aβ) aggregates and metal ions within senile plaques is a hallmark of Alzheimer's disease (AD). Among the modifications observed in Aβ peptides, <i>N</i>-terminal truncation at Phe4, yielding Aβ<sub>4-x</sub>, is highly prevalent in AD-affected brains and significantly alters Aβ's metal-binding and aggregation profiles. Despite the abundance of Zn(II) in senile plaques, its impact on the aggregation and toxicity of Aβ<sub>4-x</sub> remains unexplored. Here, we report the distinct aggregation behavior of <i>N</i>-terminally truncated Aβ, specifically Aβ<sub>4-42</sub>, in the absence and presence of either Zn(II), Aβ seeds, or both, and compare it to that of full-length Aβ<sub>1-42</sub>. Our findings reveal notable differences in the aggregation profiles of Aβ<sub>4-42</sub> and Aβ<sub>1-42</sub>, largely influenced by their different Zn(II)-binding properties. These results provide insights into the mechanisms underlying the distinct aggregation behavior of truncated and full-length Aβ in the presence of Zn(II), contributing to a deeper understanding of AD pathology.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00831","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The deposition of amyloid-β (Aβ) aggregates and metal ions within senile plaques is a hallmark of Alzheimer's disease (AD). Among the modifications observed in Aβ peptides, N-terminal truncation at Phe4, yielding Aβ4-x, is highly prevalent in AD-affected brains and significantly alters Aβ's metal-binding and aggregation profiles. Despite the abundance of Zn(II) in senile plaques, its impact on the aggregation and toxicity of Aβ4-x remains unexplored. Here, we report the distinct aggregation behavior of N-terminally truncated Aβ, specifically Aβ4-42, in the absence and presence of either Zn(II), Aβ seeds, or both, and compare it to that of full-length Aβ1-42. Our findings reveal notable differences in the aggregation profiles of Aβ4-42 and Aβ1-42, largely influenced by their different Zn(II)-binding properties. These results provide insights into the mechanisms underlying the distinct aggregation behavior of truncated and full-length Aβ in the presence of Zn(II), contributing to a deeper understanding of AD pathology.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research