Advancing microfluidic design with machine learning: a Bayesian optimization approach.

IF 6.1 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS Lab on a Chip Pub Date : 2025-01-31 DOI:10.1039/d4lc00872c
Ivana Kundacina, Ognjen Kundacina, Dragisa Miskovic, Vasa Radonic
{"title":"Advancing microfluidic design with machine learning: a Bayesian optimization approach.","authors":"Ivana Kundacina, Ognjen Kundacina, Dragisa Miskovic, Vasa Radonic","doi":"10.1039/d4lc00872c","DOIUrl":null,"url":null,"abstract":"<p><p>Microfluidic technology, which involves the manipulation of fluids in microchannels, faces challenges in channel design and performance optimization due to its complex, multi-parameter nature. Traditional design and optimization approaches usually rely on time-consuming numerical simulations, or on trial-and-error methods, which entail high costs associated with experimental evaluations. Additionally, commonly used optimization methods require many numerical simulations, and to avoid excessive computation time, they approximate simulation results with faster surrogate models. Alternatively, machine learning (ML) is becoming increasingly significant in microfluidics and technology in general, enabling advancements in data analysis, automation, and system optimization. Among ML methods, Bayesian optimization (BO) stands out by systematically exploring the design space, usually using Gaussian processes (GP) to model the objective function and guide the search for optimal designs. In this paper, we demonstrate the application of BO in the design optimization of the microfluidic systems, by enhancing the mixing performance of a micromixer with parallelogram barriers and a Tesla micromixer modified with parallelogram barriers. Micromixer models were made using Comsol Multiphysics software® and their geometric parameters were optimized using BO. The presented approach minimizes the number of required simulations to reach the optimal design, thus eliminating the need for developing a separate surrogate model for approximation of the simulation results. The results showed the effectiveness of using BO for design optimization, both in terms of the execution speed and reaching the optimum of the objective function. The optimal geometries for efficient mixing were achieved at least an order of magnitude faster compared to state-of-the-art optimization methods for microfluidic design. In addition, the presented approach can be widely applied to other microfluidic devices, such as droplet generators, particle separators, <i>etc.</i></p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4lc00872c","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Microfluidic technology, which involves the manipulation of fluids in microchannels, faces challenges in channel design and performance optimization due to its complex, multi-parameter nature. Traditional design and optimization approaches usually rely on time-consuming numerical simulations, or on trial-and-error methods, which entail high costs associated with experimental evaluations. Additionally, commonly used optimization methods require many numerical simulations, and to avoid excessive computation time, they approximate simulation results with faster surrogate models. Alternatively, machine learning (ML) is becoming increasingly significant in microfluidics and technology in general, enabling advancements in data analysis, automation, and system optimization. Among ML methods, Bayesian optimization (BO) stands out by systematically exploring the design space, usually using Gaussian processes (GP) to model the objective function and guide the search for optimal designs. In this paper, we demonstrate the application of BO in the design optimization of the microfluidic systems, by enhancing the mixing performance of a micromixer with parallelogram barriers and a Tesla micromixer modified with parallelogram barriers. Micromixer models were made using Comsol Multiphysics software® and their geometric parameters were optimized using BO. The presented approach minimizes the number of required simulations to reach the optimal design, thus eliminating the need for developing a separate surrogate model for approximation of the simulation results. The results showed the effectiveness of using BO for design optimization, both in terms of the execution speed and reaching the optimum of the objective function. The optimal geometries for efficient mixing were achieved at least an order of magnitude faster compared to state-of-the-art optimization methods for microfluidic design. In addition, the presented approach can be widely applied to other microfluidic devices, such as droplet generators, particle separators, etc.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Lab on a Chip
Lab on a Chip 工程技术-化学综合
CiteScore
11.10
自引率
8.20%
发文量
434
审稿时长
2.6 months
期刊介绍: Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.
期刊最新文献
EV-Lev: extracellular vesicle isolation from human plasma using microfluidic magnetic levitation device. Smartphones as a platform for molecular analysis: concepts, methods, devices and future potential. Microfluidic paper-based analytical soft actuators (μPAC). A sample-to-answer digital microfluidic multiplexed PCR system for syndromic pathogen detection in respiratory tract infection. Bone microphysiological models for biomedical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1