Carbon dots derived from organic drug molecules with improved therapeutic effects and new functions.

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nanoscale Pub Date : 2025-01-31 DOI:10.1039/d4nr04467c
Zhao-Fan Wu, Xiao-Xiao Luo, Xiao-Feng Shi, Bao-Juan Wang, Hao-Wen Sun, Zhao-Nan Sun, Yuan-Qing Mao, Huan-Ming Xiong
{"title":"Carbon dots derived from organic drug molecules with improved therapeutic effects and new functions.","authors":"Zhao-Fan Wu, Xiao-Xiao Luo, Xiao-Feng Shi, Bao-Juan Wang, Hao-Wen Sun, Zhao-Nan Sun, Yuan-Qing Mao, Huan-Ming Xiong","doi":"10.1039/d4nr04467c","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon dots (CDs) are new types of fluorescent nanomaterials with particle diameters of 1∼10 nm and have excellent photoluminescence (PL) properties, good biocompatibility, simple preparation methods and numerous raw materials; consequently, they are promising in the biomedical field. In recent years, to overcome drug resistance and toxic side effects of traditional organic drugs, the synthesis of CDs from drug molecules has become an effective strategy, which produces CDs with the same therapeutic effects as the raw drugs and even possessing new properties. At present, many CDs derived from organic drugs have been developed, which can be classified according to their sources such as antibiotics, anti-inflammatory drugs, and guanidine drugs. This article focuses on the progress of the above-mentioned drug-derived CDs compared with their drug precursors in terms of therapeutic efficacy, enhanced performance and new additional functions, with special attention to the structure-activity relationship between the drug precursors and the CD-based therapeutic agents. It demonstrates the feasibility of designing new drug-derived CDs for clinical applications, summarizes the shortcomings and research gaps of the existing work, and provides a reference for related work in the future.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr04467c","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon dots (CDs) are new types of fluorescent nanomaterials with particle diameters of 1∼10 nm and have excellent photoluminescence (PL) properties, good biocompatibility, simple preparation methods and numerous raw materials; consequently, they are promising in the biomedical field. In recent years, to overcome drug resistance and toxic side effects of traditional organic drugs, the synthesis of CDs from drug molecules has become an effective strategy, which produces CDs with the same therapeutic effects as the raw drugs and even possessing new properties. At present, many CDs derived from organic drugs have been developed, which can be classified according to their sources such as antibiotics, anti-inflammatory drugs, and guanidine drugs. This article focuses on the progress of the above-mentioned drug-derived CDs compared with their drug precursors in terms of therapeutic efficacy, enhanced performance and new additional functions, with special attention to the structure-activity relationship between the drug precursors and the CD-based therapeutic agents. It demonstrates the feasibility of designing new drug-derived CDs for clinical applications, summarizes the shortcomings and research gaps of the existing work, and provides a reference for related work in the future.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
期刊最新文献
Metal–organic framework microneedles for precision transdermal drug delivery: design strategy and therapeutic potential NIR-II photothermal therapy combined with activatable immunotherapy against recurrence and metastasis of orthotopic triple-negative breast cancer Correction: Unveiling the potential of Cu–Pd/CdS catalysts to supply and rectify electron transfer for H2 generation from water splitting Towards 1D supramolecular chiral assemblies based on porphyrin-calixarene complexes† Thermodynamics and Kinetics of Early Stages of Carbon Dots Formation: A Case of Citric Acid and Ethylenediamine Reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1