Jing Pang, Shun Feng, Bin Huang, Jujun Zhou, Linjun Zhan, Ya-Qiu Long
{"title":"Novel Bioorthogonal Theranostic Scaffold Enables on-Target Drug Release and Real Time Monitoring In Vivo.","authors":"Jing Pang, Shun Feng, Bin Huang, Jujun Zhou, Linjun Zhan, Ya-Qiu Long","doi":"10.1021/acs.jmedchem.4c02965","DOIUrl":null,"url":null,"abstract":"<p><p>Bioorthogonal chemistry-based prodrug strategy features spatiotemporally controlled release of therapeutic agent and/or imaging probe. However, the integration of diagnosis and therapy into a single molecule paired with a single bioorthogonal trigger remains a challenge. In this study, we devised a novel bioorthogonal theranostic scaffold amenable to the conjugation of various targeting agent and click-to-release reaction with the bioorthogonal prodrug to enable targeted drug liberation with concomitant fluorescence emission. Such one-stone-three-birds scaffold consists of a new fluorophore phenanthrodioxine (PDO) linked with a fluorescence masking group, tetrazine (Tz) which serves as a dual switch for the activation of fluorophore and drug. Further installation of a warhead of phenylboronic acid (PBA) ensures the targeted accumulation of the resultant PBA-PDO-Tz conjugate in tumor cells, thereby achieving on-demand activation of <i>trans</i>-cyclooctene-caged anticancer drug Doxorubicin with real-time monitoring and on-target cytotoxicity in live cells and an A549 xenograft mouse model. The targeted single trigger-dual response scaffold holds promise for precise theranostics applications <i>in vivo</i>.</p>","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":" ","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c02965","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bioorthogonal chemistry-based prodrug strategy features spatiotemporally controlled release of therapeutic agent and/or imaging probe. However, the integration of diagnosis and therapy into a single molecule paired with a single bioorthogonal trigger remains a challenge. In this study, we devised a novel bioorthogonal theranostic scaffold amenable to the conjugation of various targeting agent and click-to-release reaction with the bioorthogonal prodrug to enable targeted drug liberation with concomitant fluorescence emission. Such one-stone-three-birds scaffold consists of a new fluorophore phenanthrodioxine (PDO) linked with a fluorescence masking group, tetrazine (Tz) which serves as a dual switch for the activation of fluorophore and drug. Further installation of a warhead of phenylboronic acid (PBA) ensures the targeted accumulation of the resultant PBA-PDO-Tz conjugate in tumor cells, thereby achieving on-demand activation of trans-cyclooctene-caged anticancer drug Doxorubicin with real-time monitoring and on-target cytotoxicity in live cells and an A549 xenograft mouse model. The targeted single trigger-dual response scaffold holds promise for precise theranostics applications in vivo.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.