Triazination/IEDDA Cascade Modular Strategy Installing Pyridines/Pyrimidines onto Tyrosine Enables Peptide Screening and Optimization.

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2025-01-30 DOI:10.1021/jacs.4c17615
Quan Zuo, Xinyi Song, Jie Yan, Guangjun Bao, Yiping Li, Jieting Shen, Zeyuan He, Kuan Hu, Wangsheng Sun, Rui Wang
{"title":"Triazination/IEDDA Cascade Modular Strategy Installing Pyridines/Pyrimidines onto Tyrosine Enables Peptide Screening and Optimization.","authors":"Quan Zuo, Xinyi Song, Jie Yan, Guangjun Bao, Yiping Li, Jieting Shen, Zeyuan He, Kuan Hu, Wangsheng Sun, Rui Wang","doi":"10.1021/jacs.4c17615","DOIUrl":null,"url":null,"abstract":"<p><p>Modular chemical postmodification of peptides is a promising strategy that supports the optimization and innovation of hit peptide therapeutics by enabling rapid derivatization. However, current methods are primarily limited to traditional bio-orthogonal strategies and chemical ligation techniques, which require the preintroduction of non-natural amino acids and impose fixed methods that limit peptide diversity. Here, we developed the Tyrosine-1,2,3-Triazine Ligation (YTL) strategy, which constructs novel linkages (pyridine and pyrimidine) through a \"one-pot, two-step\" process combining S<sub>N</sub>Ar and IEDDA reactions, promoting modular post modification of Tyr-containing peptides. After optimizing the YTL strategy and establishing standard procedures, we successfully applied it to the solid-phase postmodification of various biorelated peptides, such as the synthesis of dual-mode imaging probes and long-acting GLP-1 analogs. As a proof of concept, a library of 384 amphipathic peptides was constructed using YTL based on 96-well microfiltration plates. Modular modifications were then performed on the screened template tripeptide RYR, leading to the generation of 20 derivatives. The antibacterial activity of these derivatives was systematically characterized, identifying <b>Z8</b> as a potential antibacterial candidate.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c17615","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Modular chemical postmodification of peptides is a promising strategy that supports the optimization and innovation of hit peptide therapeutics by enabling rapid derivatization. However, current methods are primarily limited to traditional bio-orthogonal strategies and chemical ligation techniques, which require the preintroduction of non-natural amino acids and impose fixed methods that limit peptide diversity. Here, we developed the Tyrosine-1,2,3-Triazine Ligation (YTL) strategy, which constructs novel linkages (pyridine and pyrimidine) through a "one-pot, two-step" process combining SNAr and IEDDA reactions, promoting modular post modification of Tyr-containing peptides. After optimizing the YTL strategy and establishing standard procedures, we successfully applied it to the solid-phase postmodification of various biorelated peptides, such as the synthesis of dual-mode imaging probes and long-acting GLP-1 analogs. As a proof of concept, a library of 384 amphipathic peptides was constructed using YTL based on 96-well microfiltration plates. Modular modifications were then performed on the screened template tripeptide RYR, leading to the generation of 20 derivatives. The antibacterial activity of these derivatives was systematically characterized, identifying Z8 as a potential antibacterial candidate.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Helix-Guarded Molecular Clips for Cell-Free DNA Scavenging and Treatment of Systemic Lupus Erythematosus Bioorthogonal Reaction of β-Chloroacroleins with meta-Aminothiophenol to Develop Near-Infrared Fluorogenic Probes for Simultaneous Two-color Imaging Charge Density Wave and Superconductivity in BaSbTe2S Heterolayer Crystal with 2D Te Square Nets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1