Savannah J Jones, Dawson J Bell, Jeffrey S McFarlane
{"title":"Structure of Clostridium leptum carboxyspermidine decarboxylase and comparison to homologs prevalent within the human gut microbiome.","authors":"Savannah J Jones, Dawson J Bell, Jeffrey S McFarlane","doi":"10.1107/S2053230X25000482","DOIUrl":null,"url":null,"abstract":"<p><p>Polyamines are key signalling and substrate molecules that are made by all organisms. The polyamine known as spermidine is typically made by spermidine synthase, but in many bacterial species, including 70% of human gut microbes, carboxyspermidine decarboxylase (CASDC) performs the terminal step in the production of spermidine. An X-ray crystal structure of CASDC from the human gut microbe Clostridium leptum has been solved by molecular replacement at a resolution of 1.41 Å. CASDC is a homodimer, with each monomer composed of two domains: a β/α-barrel pyridoxal 5'-phosphate-binding domain that forms most of the active site and a β-barrel domain that extends the dimeric interface and contributes to the active site of the opposing monomer. We performed a structural comparison of CASDC enzymes for 15 common genera within the human gut flora. This analysis reveals structural differences occurring in the β6/β7 loop that acts as a `flap' covering the active site and in the α9/β12 loop that is connected to the α9 helix which is thought to select substrates by their chain length. This structural analysis extends our understanding of a key enzyme in spermidine biosynthesis in many bacterial species.</p>","PeriodicalId":7029,"journal":{"name":"Acta crystallographica. Section F, Structural biology communications","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica. Section F, Structural biology communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S2053230X25000482","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Polyamines are key signalling and substrate molecules that are made by all organisms. The polyamine known as spermidine is typically made by spermidine synthase, but in many bacterial species, including 70% of human gut microbes, carboxyspermidine decarboxylase (CASDC) performs the terminal step in the production of spermidine. An X-ray crystal structure of CASDC from the human gut microbe Clostridium leptum has been solved by molecular replacement at a resolution of 1.41 Å. CASDC is a homodimer, with each monomer composed of two domains: a β/α-barrel pyridoxal 5'-phosphate-binding domain that forms most of the active site and a β-barrel domain that extends the dimeric interface and contributes to the active site of the opposing monomer. We performed a structural comparison of CASDC enzymes for 15 common genera within the human gut flora. This analysis reveals structural differences occurring in the β6/β7 loop that acts as a `flap' covering the active site and in the α9/β12 loop that is connected to the α9 helix which is thought to select substrates by their chain length. This structural analysis extends our understanding of a key enzyme in spermidine biosynthesis in many bacterial species.
期刊介绍:
Acta Crystallographica Section F is a rapid structural biology communications journal.
Articles on any aspect of structural biology, including structures determined using high-throughput methods or from iterative studies such as those used in the pharmaceutical industry, are welcomed by the journal.
The journal offers the option of open access, and all communications benefit from unlimited free use of colour illustrations and no page charges. Authors are encouraged to submit multimedia content for publication with their articles.
Acta Cryst. F has a dedicated online tool called publBio that is designed to make the preparation and submission of articles easier for authors.