{"title":"Precision engineering of the probiotic <i>Escherichia coli</i> Nissle 1917 with prime editing.","authors":"Pei-Ru Chen, Ying Wei, Xin Li, Hai-Yan Yu, Shu-Guang Wang, Xian-Zheng Yuan, Peng-Fei Xia","doi":"10.1128/aem.00031-25","DOIUrl":null,"url":null,"abstract":"<p><p>CRISPR-Cas systems are transforming precision medicine with engineered probiotics as next-generation diagnostics and therapeutics. To promote human health and treat disease, engineering probiotic bacteria demands maximal versatility to enable non-natural functionalities while minimizing undesired genomic interferences. Here, we present a streamlined prime editing approach tailored for probiotic <i>Escherichia coli</i> Nissle 1917 utilizing only essential genetic modules, including Cas9 nickase from <i>Streptococcus pyogenes</i>, a codon-optimized reverse transcriptase, and a prime editing guide RNA, and an optimized workflow with longer induction. As a result, we achieved all types of prime editing in every individual round of experiments with efficiencies of 25.0%, 52.0%, and 66.7% for DNA deletion, insertion, and substitution, respectively. A comprehensive evaluation of off-target effects revealed a significant reduction in unintended mutations, particularly in comparison to two different base editing methods. Leveraging the prime editing system, we inserted a unique DNA sequence to barcode the edited strain and established an antibiotic-resistance-gene-free platform to enable non-natural functionalities. Our prime editing strategy presents a CRISPR-Cas system that can be readily implemented in any laboratories with the basic CRISPR setups, paving the way for future innovations in engineered probiotics.IMPORTANCEOne ultimate goal of gene editing is to introduce designed DNA variations at specific loci in living organisms with minimal unintended interferences in the genome. Achieving this goal is especially critical for creating engineered probiotics as living diagnostics and therapeutics to promote human health and treat diseases. In this endeavor, we report a customized prime editing system for precision engineering of probiotic <i>Escherichia coli</i> Nissle 1917. With such a system, we developed a barcoding system for tracking engineered strains, and we built an antibiotic-resistance-gene-free platform to enable non-natural functionalities. We provide not only a powerful gene editing approach for probiotic bacteria but also new insights into the advancement of innovative CRISPR-Cas systems.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0003125"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/aem.00031-25","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
CRISPR-Cas systems are transforming precision medicine with engineered probiotics as next-generation diagnostics and therapeutics. To promote human health and treat disease, engineering probiotic bacteria demands maximal versatility to enable non-natural functionalities while minimizing undesired genomic interferences. Here, we present a streamlined prime editing approach tailored for probiotic Escherichia coli Nissle 1917 utilizing only essential genetic modules, including Cas9 nickase from Streptococcus pyogenes, a codon-optimized reverse transcriptase, and a prime editing guide RNA, and an optimized workflow with longer induction. As a result, we achieved all types of prime editing in every individual round of experiments with efficiencies of 25.0%, 52.0%, and 66.7% for DNA deletion, insertion, and substitution, respectively. A comprehensive evaluation of off-target effects revealed a significant reduction in unintended mutations, particularly in comparison to two different base editing methods. Leveraging the prime editing system, we inserted a unique DNA sequence to barcode the edited strain and established an antibiotic-resistance-gene-free platform to enable non-natural functionalities. Our prime editing strategy presents a CRISPR-Cas system that can be readily implemented in any laboratories with the basic CRISPR setups, paving the way for future innovations in engineered probiotics.IMPORTANCEOne ultimate goal of gene editing is to introduce designed DNA variations at specific loci in living organisms with minimal unintended interferences in the genome. Achieving this goal is especially critical for creating engineered probiotics as living diagnostics and therapeutics to promote human health and treat diseases. In this endeavor, we report a customized prime editing system for precision engineering of probiotic Escherichia coli Nissle 1917. With such a system, we developed a barcoding system for tracking engineered strains, and we built an antibiotic-resistance-gene-free platform to enable non-natural functionalities. We provide not only a powerful gene editing approach for probiotic bacteria but also new insights into the advancement of innovative CRISPR-Cas systems.
期刊介绍:
Applied and Environmental Microbiology (AEM) publishes papers that make significant contributions to (a) applied microbiology, including biotechnology, protein engineering, bioremediation, and food microbiology, (b) microbial ecology, including environmental, organismic, and genomic microbiology, and (c) interdisciplinary microbiology, including invertebrate microbiology, plant microbiology, aquatic microbiology, and geomicrobiology.