A novel amino-pyrimidine inhibitor suppresses tumor growth via microtubule destabilization and Bmi-1 down-regulation

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY Biochemical pharmacology Pub Date : 2025-01-27 DOI:10.1016/j.bcp.2025.116783
Lijie Gao , Jiawei Liu , Rui Zhang , Xi Chen , Mo Wang , Yujia Dong , Mykhaylo S. Frasinyuk , Wen Zhang , David Watt , Wenxiang Meng , Jun Xue , Chunming Liu , Yu Cheng , Xifu Liu
{"title":"A novel amino-pyrimidine inhibitor suppresses tumor growth via microtubule destabilization and Bmi-1 down-regulation","authors":"Lijie Gao ,&nbsp;Jiawei Liu ,&nbsp;Rui Zhang ,&nbsp;Xi Chen ,&nbsp;Mo Wang ,&nbsp;Yujia Dong ,&nbsp;Mykhaylo S. Frasinyuk ,&nbsp;Wen Zhang ,&nbsp;David Watt ,&nbsp;Wenxiang Meng ,&nbsp;Jun Xue ,&nbsp;Chunming Liu ,&nbsp;Yu Cheng ,&nbsp;Xifu Liu","doi":"10.1016/j.bcp.2025.116783","DOIUrl":null,"url":null,"abstract":"<div><div>Colorectal cancer (CRC), one of the diseases posing a threat to global health, according to the latest data, is the third most common cancer globally and the second leading cause of cancer-related deaths. The development and refinement of novel structures of small molecular compounds play a crucial role in tumor treatment and overcoming drug resistance. In this study, our objective was to screen and characterize novel compounds for overcoming drug resistance <em>via</em> the B Lymphoma Mo-MLV insertion region 1 (Bmi-1) reporter screen assay. The stable cell line harboring the Bmi-1 reporter gene was utilized to screen 300 compounds, leading to the identification of an amino-pyrimidine compound, <strong>APD-94</strong>. <em>In vitro</em>, <strong>APD-94</strong> markedly inhibited cancer cell proliferation and decreased Bmi-1 expression at both the RNA and protein levels. <em>In vivo</em>, <strong>APD-94</strong> repressed the growth of HT29 cell xenografts in NOD/SCID mice without notable side effects. Flow cytometry results demonstrated that <strong>APD-94</strong> induced G2/M phase arrest and apoptosis in cells. <strong>APD-94</strong> was identified as a novel inhibitor of microtubule polymerization by directly targeting the tubulin. Furthermore, <strong>APD-94</strong> was more effective in overcoming the resistance to paclitaxel in paclitaxel-resistant A549/Tax cells. This bifunctional inhibitor is a promising candidate drug for CRC treatment.</div></div>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":"233 ","pages":"Article 116783"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006295225000450","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Colorectal cancer (CRC), one of the diseases posing a threat to global health, according to the latest data, is the third most common cancer globally and the second leading cause of cancer-related deaths. The development and refinement of novel structures of small molecular compounds play a crucial role in tumor treatment and overcoming drug resistance. In this study, our objective was to screen and characterize novel compounds for overcoming drug resistance via the B Lymphoma Mo-MLV insertion region 1 (Bmi-1) reporter screen assay. The stable cell line harboring the Bmi-1 reporter gene was utilized to screen 300 compounds, leading to the identification of an amino-pyrimidine compound, APD-94. In vitro, APD-94 markedly inhibited cancer cell proliferation and decreased Bmi-1 expression at both the RNA and protein levels. In vivo, APD-94 repressed the growth of HT29 cell xenografts in NOD/SCID mice without notable side effects. Flow cytometry results demonstrated that APD-94 induced G2/M phase arrest and apoptosis in cells. APD-94 was identified as a novel inhibitor of microtubule polymerization by directly targeting the tubulin. Furthermore, APD-94 was more effective in overcoming the resistance to paclitaxel in paclitaxel-resistant A549/Tax cells. This bifunctional inhibitor is a promising candidate drug for CRC treatment.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemical pharmacology
Biochemical pharmacology 医学-药学
CiteScore
10.30
自引率
1.70%
发文量
420
审稿时长
17 days
期刊介绍: Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics. The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process. All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review. While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.
期刊最新文献
Estrogenic actions of alkaloids: Structural characteristics and molecular mechanisms 4-amino-3-(phenylselanyl) benzenesulfonamide attenuates intermittent cold stress-induced fibromyalgia in mice: Targeting to the Nrf2-NFκB axis Breakthroughs in nanoparticle-based strategies for pancreatic cancer therapy Positive allosteric modulation of µ-opioid receptor – A new possible approach in the pain management? SIRT-2 inhibition by AK-7 orchestrates fibrotic cascades in airways through neuroimmune interaction via TRPA1, TRPM8 and TGF-β signalling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1