Ebastine-mediated destabilization of E3 ligase MKRN1 protects against metabolic dysfunction-associated steatohepatitis.

IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Cellular and Molecular Life Sciences Pub Date : 2025-01-31 DOI:10.1007/s00018-024-05535-2
Seungyeon Kim, Hyun-Ji Han, Hyunjin Rho, Subin Kang, Sulagna Mukherjee, Jiwoo Kim, Doyoun Kim, Hyuk Wan Ko, Sang Min Lim, Seung-Soon Im, Joon-Yong Chung, Jaewhan Song
{"title":"Ebastine-mediated destabilization of E3 ligase MKRN1 protects against metabolic dysfunction-associated steatohepatitis.","authors":"Seungyeon Kim, Hyun-Ji Han, Hyunjin Rho, Subin Kang, Sulagna Mukherjee, Jiwoo Kim, Doyoun Kim, Hyuk Wan Ko, Sang Min Lim, Seung-Soon Im, Joon-Yong Chung, Jaewhan Song","doi":"10.1007/s00018-024-05535-2","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic condition encompassing metabolic dysfunction-associated steatotic liver (MASL) and metabolic dysfunction-associated steatohepatitis (MASH), which can progress to fibrosis, cirrhosis, or hepatocellular carcinoma (HCC). The heterogeneous and complex nature of MASLD complicates optimal drug development. Ebastine, an antihistamine, exhibits antitumor activity in various types of cancer. However, its effects on MASH remain unexplored. In the present study, we identified ebastine as a potential treatment for MASH. Our results indicated that ebastine acts as a novel MKRN1 inhibitor by promoting MKRN1 destabilization through self-ubiquitination, leading to AMP-activated protein kinase (AMPK) activation. Ebastine appeared to bind to the C-terminal domain of MKRN1, particularly at residues R298 and K360. Notably, Mkrn1 knockout (KO) mice demonstrated resistance to MASH, including obesity, steatosis, inflammation, and fibrosis under high-fat-high-fructose diet (HFHFD) conditions. Additionally, liver-specific Mkrn1 knockdown using AAV8 alleviated MASH symptoms in HFHFD-fed mice, implicating MKRN1 as a potential therapeutic target. Consistent with these findings, treatment with ebastine significantly reduced the risk of MASH in HFHFD-fed mice, with a decrease in MKRN1 expression and an increase in AMPK activity. Our study suggests that ebastine binds to MKRN1, promoting its destabilization and subsequent degradation by stimulating its ubiquitination. This enhances AMPK stability and activity, suppressing lipid accumulation, inflammation, and fibrosis. Moreover, the knockout of Mkrn1 mice decreased the risk of MASH, suggesting that ebastine could be a promising therapeutic agent for the treatment of MASH.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"66"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-024-05535-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic condition encompassing metabolic dysfunction-associated steatotic liver (MASL) and metabolic dysfunction-associated steatohepatitis (MASH), which can progress to fibrosis, cirrhosis, or hepatocellular carcinoma (HCC). The heterogeneous and complex nature of MASLD complicates optimal drug development. Ebastine, an antihistamine, exhibits antitumor activity in various types of cancer. However, its effects on MASH remain unexplored. In the present study, we identified ebastine as a potential treatment for MASH. Our results indicated that ebastine acts as a novel MKRN1 inhibitor by promoting MKRN1 destabilization through self-ubiquitination, leading to AMP-activated protein kinase (AMPK) activation. Ebastine appeared to bind to the C-terminal domain of MKRN1, particularly at residues R298 and K360. Notably, Mkrn1 knockout (KO) mice demonstrated resistance to MASH, including obesity, steatosis, inflammation, and fibrosis under high-fat-high-fructose diet (HFHFD) conditions. Additionally, liver-specific Mkrn1 knockdown using AAV8 alleviated MASH symptoms in HFHFD-fed mice, implicating MKRN1 as a potential therapeutic target. Consistent with these findings, treatment with ebastine significantly reduced the risk of MASH in HFHFD-fed mice, with a decrease in MKRN1 expression and an increase in AMPK activity. Our study suggests that ebastine binds to MKRN1, promoting its destabilization and subsequent degradation by stimulating its ubiquitination. This enhances AMPK stability and activity, suppressing lipid accumulation, inflammation, and fibrosis. Moreover, the knockout of Mkrn1 mice decreased the risk of MASH, suggesting that ebastine could be a promising therapeutic agent for the treatment of MASH.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cellular and Molecular Life Sciences
Cellular and Molecular Life Sciences 生物-生化与分子生物学
CiteScore
13.20
自引率
1.20%
发文量
546
审稿时长
1.0 months
期刊介绍: Journal Name: Cellular and Molecular Life Sciences (CMLS) Location: Basel, Switzerland Focus: Multidisciplinary journal Publishes research articles, reviews, multi-author reviews, and visions & reflections articles Coverage: Latest aspects of biological and biomedical research Areas include: Biochemistry and molecular biology Cell biology Molecular and cellular aspects of biomedicine Neuroscience Pharmacology Immunology Additional Features: Welcomes comments on any article published in CMLS Accepts suggestions for topics to be covered
期刊最新文献
Ebastine-mediated destabilization of E3 ligase MKRN1 protects against metabolic dysfunction-associated steatohepatitis. From smog to scarred hearts: unmasking the detrimental impact of air pollution on myocardial ischemia-reperfusion injury. NFAT5 exacerbates β-cell ferroptosis by suppressing the transcription of PRDX2 in obese type 2 diabetes mellitus. M6A -mediated lncRNA SCIRT stability promotes NSCLC progression through binding to SFPQ and activating the PI3K/Akt pathway. Calcium-binding protein CALU-1 is essential for proper collagen formation in Caenorhabditis elegans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1