{"title":"Andrographolide Mitigates Cisplatin Resistance by Inhibiting SPP1 Regulated NF-kB/iNOS/COX-2 and PI3K/AKT Pathway in Cisplatin Resistant Cervical Carcinoma Cells","authors":"Akbar Pasha, Doneti Ravinder, Smita C. Pawar","doi":"10.1002/ddr.70052","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Drug resistance and cancer recurrence are major cause of Cervical cancer (CC) patient mortality. Cisplatin (CDDP) is the major drug that has been extremely used in all stages in treating CC, although relapse and malignant instances have been observed as a result of cisplatin resistance in CC. In the present study, we established Cisplatin resistant CC HeLa cell line model and the cytotoxic effects of Andro as a single agent or in combination with CDDP were investigated to assess its potential as a chemotherapeutic agent in cisplatin-resistant HeLa (CisR-HeLa) cells. Andro enhanced the cytotoxicity of CDDP in CisR-HeLa cells and shown a synergistic effect by reducing cell viability, proliferation, migration, invasion, and inducing apoptosis in cisplatin resistant cells. Furthermore, we evaluated the expression levels of inflammatory and oncogenic proteins, SPP1, NF-kB, iNOS, COX-2, and the PI3K/AKT signaling pathway, which are associated with cisplatin resistance, as well as using Andro to regulate the targeted markers in CisR-HeLa cells to overcome resistance. The results show that suppressing SPP1 and NF-kB by Andro alone or in combination with CDDP regulates iNOS, COX-2, and increases PTEN expression. The addition of Andro to CDDP inhibited PI3K and AKT expression as well as triggered synergistic apoptosis, which could be associated with variations in Bax and Bcl-2 protein levels. The results suggest that Andro in combination with CDDP exhibits synergistic anti-tumor growth efficacy that targets multiple inflammatory markers, resulting in a promising treatment option for individuals with recurrent cancer due to drug resistance and advanced CC.</p>\n </div>","PeriodicalId":11291,"journal":{"name":"Drug Development Research","volume":"86 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ddr.70052","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Drug resistance and cancer recurrence are major cause of Cervical cancer (CC) patient mortality. Cisplatin (CDDP) is the major drug that has been extremely used in all stages in treating CC, although relapse and malignant instances have been observed as a result of cisplatin resistance in CC. In the present study, we established Cisplatin resistant CC HeLa cell line model and the cytotoxic effects of Andro as a single agent or in combination with CDDP were investigated to assess its potential as a chemotherapeutic agent in cisplatin-resistant HeLa (CisR-HeLa) cells. Andro enhanced the cytotoxicity of CDDP in CisR-HeLa cells and shown a synergistic effect by reducing cell viability, proliferation, migration, invasion, and inducing apoptosis in cisplatin resistant cells. Furthermore, we evaluated the expression levels of inflammatory and oncogenic proteins, SPP1, NF-kB, iNOS, COX-2, and the PI3K/AKT signaling pathway, which are associated with cisplatin resistance, as well as using Andro to regulate the targeted markers in CisR-HeLa cells to overcome resistance. The results show that suppressing SPP1 and NF-kB by Andro alone or in combination with CDDP regulates iNOS, COX-2, and increases PTEN expression. The addition of Andro to CDDP inhibited PI3K and AKT expression as well as triggered synergistic apoptosis, which could be associated with variations in Bax and Bcl-2 protein levels. The results suggest that Andro in combination with CDDP exhibits synergistic anti-tumor growth efficacy that targets multiple inflammatory markers, resulting in a promising treatment option for individuals with recurrent cancer due to drug resistance and advanced CC.
期刊介绍:
Drug Development Research focuses on research topics related to the discovery and development of new therapeutic entities. The journal publishes original research articles on medicinal chemistry, pharmacology, biotechnology and biopharmaceuticals, toxicology, and drug delivery, formulation, and pharmacokinetics. The journal welcomes manuscripts on new compounds and technologies in all areas focused on human therapeutics, as well as global management, health care policy, and regulatory issues involving the drug discovery and development process. In addition to full-length articles, Drug Development Research publishes Brief Reports on important and timely new research findings, as well as in-depth review articles. The journal also features periodic special thematic issues devoted to specific compound classes, new technologies, and broad aspects of drug discovery and development.